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Per Elisa

Oh, and if I ever want proof
Then I find it in you,

Oh, yeah I honestly do,

In you I find proof.

Coldplay, “Proof”






There was a moment’s expectant pause whilst panels slowly came to life on the front of the
console. Lights flashed on and off experimentally and settled down into a businesslike
pattern. A soft low hum came from the communication channel.

“Good morning,” said Deep Thought at last.

“Er...Good morning, O Deep Thought,” said Loonquawl nervously, “do you have...er,
that is...”

“An answer for you?” interrupted Deep Thought majestically. “Yes. I have.”

The two men shivered with expectancy. Their waiting had not been in vain.

“There really is one?” breathed Phouchg.

“There really is one,” confirmed Deep Thought.

“To Everything? To the great Question of Life, the Universe and Everything?”

“Yes.”

Both of the men had been trained for this moment, their lives had been a preparation for it,
they had been selected at birth as those who would witness the answer, but even so they
found themselves gasping and squirming like excited children.

“And you're ready to give it to us?” urged Loonquawl.

“T am.”

“Now?”

“Now,” said Deep Thought.

They both licked their dry lips.

“Though I don’t think,” added Deep Thought, “that you’re going to like it.”

“Doesn’t matter!” said Phouchg. “We must know it! Now!”

“Now?” inquired Deep Thought.

“Yes! Now...”

“All right,” said the computer and settled into silence again. The two men fidgeted. The
tension was unbearable.

“You're really not going to like it,” observed Deep Thought.

“Tell us!”

“All right,” said Deep Thought. “The Answer to the Great Question...”

“Yes...!”

“Of Life, the Universe and Everything...” said Deep Thought.

“Yes...!”

“Is...” said Deep Thought, and paused.

“Yes...I"”

“Is...”

“ Forty-two,” said Deep Thought, with infinite majesty and calm.

Douglas Adams, “The Hitchhiker’s Guide to the Galaxy”
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Introduction

This Ph.D. thesis is devoted to the computation of the Hodge-Deligne polynomials of some
moduli spaces of stable coherent systems.

During the last 2 decades coherent systems on algebraic curves have been widely studied
in algebraic geometry, mainly because they are a very powerful tool in order to understand
Brill-Noether theory for vector bundles. In its turn, Brill-Noether theory has an important
role to play in understanding the geometric structure of the moduli spaces of curves.

For any smooth irreducible projective complex curve C, a coherent system on C (see [KN])
is a pair (F, V) where E is an algebraic vector bundle on C and V is a linear subspace of the
space of global sections of E. To any such object one can associate a triple (n, d, k) where n,d
are the rank and the degree of E and k is the dimension of V. This notion can be generalized
to any projective scheme (see, for example |[LP] and [He]).

To construct a space which parametrizes coherent systems on an algebraic curve (see [KN]),
one has to fix the invariants (n,d, k) and also a stability parameter a in R>o. Having fixed
these data, one can give a natural scheme structure to the sets

e G(a;n,d, k) which parametrizes isomorphism classes of a-stable coherent systems of
type (n,d, k);

) é(a; n,d, k) which parametrizes classes of S-equivalent a-semistable coherent systems
of type (n,d, k).
é(a; n,d, k) is a projective scheme and G(«;n,d, k) is an open subscheme of it. If n,d and
k are relative coprime and « is generic, then the 2 schemes coincide (see [ BGMMN], definition
1.2]).

Having fixed a triple (n,d, k), it is known that the stability condition does not vary in
open intervals and that there exist only finitely many critical values where the stability condi-
tion changes. Therefore, for every triple (n,d, k) there are only finitely many distinct moduli
spaces of stable coherent systems, parametrized by open intervals. In particular, for every
(n,d, k) there are strong relations between the Brill-Noether locus B(n,d, k) and the moduli
space G(a;n,d, k) for a near zero (this is described in [BGMN| proposition 2.5 and §2.3]).

1
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Regrettably, in general there is no good explicit description of the moduli spaces near zero,
while those associated to a parameter « very large are easy to study (see [BO| for & < n and
[BGMN] for k£ > n).

Because of their connection with Brill-Noether loci, in the last 20 years moduli spaces of
coherent systems have been studied quite intensively (see [BGMN], [BGMMN], [LN], [LN2],
just to cite some recent papers). As we said, having fixed (n, d, k), the moduli space for a large
is easy to understand; this led S. B. Bradlow, L. Brambila-Paz, O. Garcia-Prada, V. Mercat,
V. Munoz and P. E. Newstead, to start a programme of research to try to pull back information
from that moduli space to the moduli space for o small by crossing every intermediate critical
value. Until now the information that they were able to obtain (sometimes with additional
restrictions on the curve C' and/or on the triple (n,d, k)) were mainly about non-emptiness,
irreducibility, Picard groups, Poincaré polynomials and first and second homotopy groups of
some of those moduli spaces.

The aim of this thesis is that of trying to get more refined invariants for at least some of
those moduli spaces. In particular, we compute the so called Hodge-Deligne polynomials of
some of those spaces. For any (reduced) scheme X, these are polynomials of 2 variables u, v
where the coefficients are the dimensions of the graded pieces associated to a standard filtra-
tion of the cohomology groups of X. This filtration was originally introduced by P. Deligne
in [D1], [D2] and [D3]; these polynomials can be defined for every algebraic scheme, not nec-
essarily smooth, irreducible or projective. If the moduli spaces are smooth, irreducible and
projective and one evaluates those polynomials on the same variable u = v =: ¢, one gets the
usual Poincaré polynomials.

A good motivation to compute those polynomials is given by analogous computations per-
formed for some spaces of holomorphic triples in [MOVG], [MOVG2| and [M].

For every triple (n,d, k) and for every critical value a. for it, the only polynomials that
one needs to compute are those arising from the subschemes G*(a;n,d, k) C G(af;n,d, k)
and G~ (ag;n,d, k) C G(ag;n,d, k). Gt (ae;n,d, k), respectively G~ (ae; n, d, k), parametri-
zes all coherent systems (E,V) that are af-stable but « -unstable (respectively, a; -stable
but of-unstable), so one needs to get a geometric description of these subschemes in order to
compute the corresponding Hodge-Deligne polynomials.

Each of these subschemes will be divided into subschemes according to some invariants.
The most important ones will be the length r of any a.-Jordan-Holder filtration and the type
t of the a.-canonical filtration. By “type of the a,-canonical filtration” we mean the following:
we can associate to every ac-semistable coherent system an ac-canonical filtration of length
1<s<m

0cC (E1,V1)C---C(FsV5)=(E,V)



such that every (E;,V;)/(Ei—1,Vi—1) is the maximal suboject of (E,V)/(E;—1, Vi—1) that
is the direct sum of a.-stable coherent systems with the same a.-slope as (E,V). To any
such filtration we can associate a unique vector t = (t1,--- ,ts) € N® called the type of the
filtration of (E,V), where t¢; is defined as the length of any a.-Jordan-Hélder filtration of
(Ei, Vi) /(E;—1,V;—1). In particular, an object (E, V) will have unique «a,.-Jordan-Hoélder filtra-
tion if and only if its a,-canonical filtration is of type (1,---,1) (r times). Another invariant
that we will have to take into account will be the presence of isomorphic coherent systems in
the graded.

For technical reasons, this gives us explicit results only for low values of n and k. In
particular, we get complete results in the cases when n = 2,3 and k = 1 (for every value of d).
We get almost complete results in the case when n = 2 and k = 2. Moreover, we get almost
complete results in the case n = 4,k = 1. In this case the polynomial that one would like to
obtain is the sum of 50 polynomials associated to various subschemes. At the moment we are
able to compute 42 of those polynomials; for the remaining 8 it is not currently possible to
get explicit formulae.

The structure of the thesis is as follows: we decided to divide it into 2 parts, putting in
the second one most of the detailed computations, so that all the basic ideas and the main
results are grouped into the first part. To be more precise, the first part of the thesis has the
following structure:

e Chapters[1],[4 and[3 we describe some of the known results on coherent systems and their
moduli spaces; we state and prove some results on a.-Jordan-Hélder and a.-canonical
filtrations and some technical lemmas on pullbacks and sums of families of extensions
of coherent systems. Moreover, we define non-degenerate extensions and we describe
necessary and sufficient conditions for having such type of extensions.

e Chapter [ we give a result of cohomology and base change for families of coherent
systems. We use that result in order to prove some useful propositions on the existence
of universal families of extensions of families of coherent systems in the spirit of [L]. We
prove analogous results for non-splitting extensions and for non-degenerate extensions.

e Chapter [} we describe how we can parametrize all classes of equivalence of non-split
exact sequences indexed by any binary tree (see that chapter for the details).

e Chapter [t we describe how we can parametrize the coherent systems (E,V)’s with a
graded of fixed type, in the case when (E, V) has unique a.-Jordan-Holder filtration of
length 3 or 4; we managed to get complete results except for the 4 subcases where the
second and third object of the graded are isomorphic.

e Chapter @ we summarize how we can parametrize all the coherent systems (E,V)’s
with a graded of fixed type, in the case when (E, V') has not a unique a,.-Jordan-Holder
filtration of length 3 or 4. We are able to get complete results except in the case of
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ac-canonical filtration of type (1,2,1), where we are able to get a pointwise description
but not a global one except for few subcases.

e Chapter [& we describe the basic literature on Hodge-Deligne theory; we recall some
known results and we state some easy lemmas about the Hodge-Deligne polynomials of
some moduli spaces; we will need to use those results in the explicit computations of the
next chapters.

e Chapter[% we summarize all the explicit results that we get on the Hodge-Deligne poly-
nomials of the moduli spaces G(«;n, d, k) when the pair (n, k) has values (2,1), (3,1), (4,
1) and (2,2). In the first 2 cases we are able to compute every polynomial, while in the
other 2 cases we get only partial results. The formulae for n = 2 and n = 3 can be ob-
tained directly from the analogous computations in [M] for the moduli spaces of triples,
while those for n = 4 are new in the literature, as far as we know.

In the second part of the thesis we describe in detail how we were able to get the results
stated in chapters [7] and [0l To be more precise:

e Chapter : we describe the schemes parametrizing all the (E,V)’s in G (ag;n, d, k) or
in G~ (ae;n,d, k) such that their a.-canonical filtration is of type (1,2) or (2,1).

e Chapter : we describe the schemes parametrizing all the (E,V)’s in G* (ag;n, d, k) or
in G~ (ag;n, d, k) such that their a.-canonical filtration is of type (3,1) or (1,3).

. Chapter we describe the schemes parametrizing all the (E,V)’s in GT(ae;n, d, k)
or in G~ (ae;n,d, k) such that their a.-canonical filtration is of type (2,1,1), (1,2,1) or
(1,1,2).

° Chapter we compute the Hodge-Deligne polynomials of all the moduli spaces G(«; 2,
d,1). We give a more explicit formula for such polynomials when « is small and d is
large enough.

e Chapters[14} we perform analogous computations for all the moduli spaces G(a; 3,4, 1).

e Chapters we compute 42 of the 50 polynomials associated to various subschemes
of G (ag;4,d,1) and G~ (a.;4,d,1). We are therefore able to get explicit formulae for
G(a;4,d,1) when the stability parameter is very large with some restrictions on d.

e Chapters we perform computations analogous to those of chapter [13|for the moduli
spaces G(«;2,d,2). Since in the literature not all the polynomials that we need are
known at the moment, the formulae that we get are not complete.



Part 1






Chapter 1

Coherent systems: objects, families
and moduli spaces

We recall in this chapter some results that we will need to use about coherent systems. If
not otherwise stated, we will always work over a fixed complex smooth irreducible projective
curve C of genus g > 2 and O = O¢ will denote the structure sheaf of C.

Definition 1.0.1. ([KNI|,[LP]) A coherent system (E,V) of type (n,d, k) consists of an al-
gebraic vector bundle E over C, of rank n and degree d, and a linear subspace V C H°(E)
of dimension k. An equivalent definition that is often used in the literature is the following.
A coherent system of type (n,d, k) is a triple (E,V,¢) where E is as before, V is a vector
space of dimension k and ¢ : V® O — FE is a sheaf map such that the induced morphism
HO(¢) : V— H°(E) is injective. The vector space V C HY(E) is then the image H"(¢)(V). If
we don’t assume that H%(¢) is injective, we will say that the triple (E,V, ¢) is a weak coherent
system of type (n,d, k) (actually, this was the original definition of coherent system in [LP],
but this notation is no more in use).

Remark 1.0.1. In fact, both [KN] and [LP] allow E to be any coherent sheaf in the definition;
for a-semistable coherent systems on smooth curves (see definition below), E' is neces-
sarily locally free, so this makes no difference. [He] allows E to be any coherent sheaf and his
coherent systems correspond to our weak coherent systems.

Definition 1.0.2. ([KN|) Given a coherent system (E,V’), a coherent subsystem of it is a
pair (E’, V') such that E’ is a subbundle of E and V' C V N HY(E').

Definition 1.0.3. Given 2 coherent systems (E, V) and (E’, V') (not necessarily of the same
type), a morphism (E', V') — (E,V) is a morphism of vector bundles o : E' — E such that
H°(a)(V') C V. An isomorphism is any morphism « as before, that is also invertible and such
that H°(a) induces an isomorphism from V' to V. Given 2 weak coherent systems (E,V, ¢)
and (E', V' ¢'), a morphism (E', V' ¢') — (E,V,¢) is any pair (a, 8) where « is a morphism
of vector bundles B/ — E and 8 : V' — V is a linear map such that there is a commutative
diagram:
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/

Ve O £
LARid e a
V& O FE.

¢

An isomorphism of weak coherent systems is a pair («, ) such that both a and g are
invertible.

By setting 3 := H%(a) we get that two coherent systems are isomorphic if and only if the
corresponding weak coherent systems are isomorphic. Moreover, the type of a (weak) coherent
system is invariant under isomorphisms.

Definition 1.0.4. For every parameter o € R and for every coherent system (E, V') of type
(n,d, k), we define the a-slope of (E,V) as

d k
pa(E,V) = —+a—.
n n

We say that (E,V) is a-stable if

pa(E V') < pia(E,V)

for all proper subsystems (E’, V') (i.e. those such that (0,0) C (E', V') C (E,V)). The notion
of a-semistability is obtained by replacing the strict inequality before by a weak inequality.
A coherent system is a-polystable if it is the direct sum of a-stable coherent systems of the
same a-slope.

There is an analogous definition for weak coherent systems (see [KN]), but we will not need
to use it. We shall simply recall that a weak coherent system of type (n,d, k) is a-semistable
(respectively, a-stable) if and only if it is (the evaluation map of) an a-semistable (respec-
tively, a-stable) coherent system of type (n,d, k) (see [KNJ lemma 2.5]).

In general, the quotient of a coherent system by a coherent subsystem is defined only as a
weak coherent system. When both coherent systems are a-semistable of the same slope, then
the quotient coherent system does exists. To be more precise, we have:

Proposition 1.0.1. (J[KN, corollary 2.5.1]) The a-semistable coherent systems of any fized o-
slope form a noetherian and artinian abelian category in which the simple objects are precisely
the a-stable coherent systems. In particular, the following statements hold.

(i) For any a-semistable coherent system (E, V') there exists an a-Jordan-Hdélder filtration
of it, i.e. a filtration:

0= (Eo, Vo) C (E1, Vi) C--- C (B, Vr) = (E,V) (1.1)



such that the quotients (Q;, W;) := (E;, V;)/(Fi—1,Vi—1) fori=1,--- |1 are all a-stable
with the same a-slope as (E,V).

(ii) If (E,V) is an a-stable coherent system, then End(E,V) ~ C.

Conversely, if (E, V) has an a-Jordan-Holder filtration, then it is necessarily a-semistable
and it is strictly a-stable if and only if the filtration has length 1. For simplicity, we will write
a-JHF in order to denote any Jordan-Hélder filtration at «. In general, the Jordan-Holder
filtration of an a-semistable coherent system (E, V) is not unique, but the graded object

gra(E7 V) = @ (Qqu)
i=1, 1
associated to it is uniquely determined up to isomorphisms. In particular, the length r of the

filtration does not depend on the filtration chosen. Then we can give the following definition.

Definition 1.0.5. For every a-semistable coherent system (E, V') of type (n,d, k) we define
ro(E,V) as the length of any o-JHF of (E,V). If «a is clear from the context, we will
simply write r(E, V). Two a-semistable coherent systems (F,V) and (E’, V') are said to be
S-equivalent if gr, (E,V) = gr, (E', V).

For every scheme S, let us denote by mg the projection C' x .S — S; for any point s in §
we write Cy for C' x {s}.

Definition 1.0.6. ([ BGMMN| definition A.6]) A family of coherent systems of type (n,d, k)
on C parametrized by a scheme S is a pair (£,V) where

e & is a rank n vector bundle on C x S such that & = &|¢, has degree d for all s in S,

e )V is a locally free subsheaf of 7g,€ of rank k, such that the fibers Vs map injectively to
HO(&,) for all sin S.

Another definition that appears in the literature is the following:

Definition 1.0.7. ([KN| definition 2.5]) A family of coherent systems of type (n,d, k) on C
parametrized by a scheme S is a triple (£,V, ¢) where:

e £ is a rank n coherent sheaf on C x S, flat over S
e Vis a locally free sheaf on S of rank k;

e ¢:m(V) — £ is a morphism of Ocxg-modules,

such that for all s in S the fiber of ¢ over s gives rise to a coherent system of type (n,d, k) on
C,~C.

In particular, this implies that for every s in S the sheaf & is locally free at (c, s) for all
¢ € C, so by [N, lemma 5.4] we get that £ is locally free. So the second definition implies
the first one. Conversely, for every family as in the first definition, one can easily associate
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a family according to the second definition by considering the map ¢ of global sections (see
also [KN, §3.5]). Therefore, we will use without any distinction either the first or the second
definition.

Remark 1.0.2. There is a more general notion of coherent system and of family of coherent
systems that is used in [LP]| and in [He]. In the case when their base X is a projective curve
C and we have a condition of flatness (see [Hel, §1.3] and [LP]), we get that the notion of
“flat family of coherent systems on X x S/S” in [He| coincides with the notion of “family of
coherent systems” over S described in the previous definitions.

Definition 1.0.8. A morphism of families of coherent systems (£',V',¢') — (€,V, ¢) para-
metrized by a scheme S is any pair of morphisms («, ) where « is a morphism of vector
bundles £’ — &€ over C' x S and f is a morphisms of vector bundles V' — V over S, such that

we have a commutative diagram as follows:
(z)/
TV — g

B Y o

*
gV

For every family of coherent systems (£,V) of type (n,d, k) parametrized by S and for
every morphism of schemes f : S" — S, the pullback via f is defined as

(f', (& V) = (f7E, V), (1.2)
where f’ is defined as the pullback
f/
C xS CxS
gl |:| s

S 5.

f (1.3)

It easy to see that ((1.2)) is a family of coherent systems of type (n,d, k) on C, parametrized
by S’. If we use the definition of family as triple (€,V, ¢), then the pullback of such a family
by f is the triple

(f ) (EV.0) = (f*E, 'V, 8),

where gg is defined as the composition
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where the first map is the canonical isomorphism induced by diagram (1.3]).

Given any family (£,V,¢) of type (n,d, k) parametrized by a scheme S and any locally
free Og-module M, we define

(57V7¢) ®S M = (5 ®C><S WgMav ®S M7¢/)

where ¢’ := ¢ Rcxs idrzaq. This is a again a family of coherent systems parametrized by S.

Remark 1.0.3. If M is only a coherent or quasi-coherent Og-module, then the tensor product
(E,V,0) ®s M is in general only a family of weak coherent systems. To be more precise, it
is an algebraic system on C' x S/S in the sense of [He|. One should also need to consider
such objects in order to define the functors Ext®’s (see below), but we will not need to deal
explicitly with such objects in the present work, so we will only consider tensor products of
families of coherent systems by locally free sheaves.

If k£ > 1, then by applying the a-semistability condition for (E, V') to the subsystem (£, 0)
one obtains that a necessary condition for the existence of a-semistable coherent systems is
that a > 0, so one can simply restrict to that range for the parameter a.

Theorem 1.0.2. ([KN, theorem 1]) For every parameter o € R>o and for every type (n,d, k)
there exist schemes G(a;n,d, k) and é(a;n, d, k) which are coarse moduli spaces for families
of a-stable (respectively a-semistable) coherent systems of type (n,d, k). The closed points
of G(a;n,d, k) are in bijection with isomorphism classes of a-stable coherent systems. The
closed points of é(a; n,d, k) are in bijection with S-equivalence classes of a-semistable coherent
systems. é(oz; n,d, k) is a projective variety and it contains G(a;n,d, k) as an open subscheme.

Remark 1.0.4. For each (n,d, k) and a > 0, the proof of this theorem follows from the usual
GIT construction: there exist a projective scheme R and an action of PGL(N) on R (both R
and N depend on (n,d, k)), together with a linearization of that action depending on a. Then
if we denote by R® and R*® the stable and the semistable loci, we get that the moduli space
G(a;n,d, k) is obtained as the quotient R*/PGL(N) and analogously for the moduli space
G(a;n,d, k). In particular, there exist families (Q5, W) and (Q%, W) over RS, respectively
over R%, that have the local universal property (see [KNJ §3.5]).

Definition 1.0.9. (|[BGMN| definition 2.4]) A parameter o > 0 is a virtual critical value
for a triple (n,d, k) if it is numerically possible to have a coherent system (E,V) of type
(n,d, k) together with a proper coherent subsystem (E’, V') such that Z—; # 2 but pa(E', V') =
to(E, V). We also regard 0 as a virtual critical value. If there is a pair (E,V), (E’, V') such
that this actually holds, we say that « is an actual critical value. Having fixed (n,d, k), all
the non-zero virtual critical values lie in the set:

{nd’ —n'd

m s.t. nglgk,0<n/<n, n/k#n/{,}ﬂ [0,00[,
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we say that a is generic for (n,d, k) if it is not critical.

If GCD(n,d,k) = 1 and « is generic, then a-semistability is equivalent to a-stability, so
é(a; n,d, k) = G(a;n,d, k). The actual critical values are only a finite number. If we label
them by «; starting with ap = 0, we get a partition of R>y. For numerical reasons, within the
interval Jay, ;1] the stability condition is independent of «, so G(a;n,d, k) ~ G(a/;n,d, k)
for all a, @’ €y, ajy1[- Therefore we write G;(n,d, k) := G(a;n, d, k) for every a €]a;, 1]
Analogously, we denote by él(n, d, k) the moduli space of a-semistable coherent systems for
every « in that interval.

For every (n,d, k) the moduli spaces Go(n,d, k) and Go(n,d, k) have strong connections
with the Brill-Noether loci of stable and of semistable bundles defined by

B(n,d,k) := {E € M(n,d) s.t. dim HY(E) > k},
B(n,d, k) := {|E] € M(n,d) s.t. dim H%(gr(E)) > k},
where M (n,d) and M (n,d) denote the moduli spaces of stable, respectively semistable, vector
bundles on C of rank n and degree d and [E] denotes the S-equivalence class of any semistable

vector bundle. In particular, the relationships between these loci and the moduli spaces of
coherent systems are accounted for by the following proposition.

Proposition 1.0.3. ([BGMN, proposition 2.5]) Let 0 < a < ay; then
(i) (E,V) a-stable implies E semistable;
(ii) E stable implies (E,V) a-stable for all V C H(E).

Lemma 1.0.4. ([He, proposition 2.2]) Let us suppose that (E, V') and (E', V') are a-semistable
for some value of a. Then:

o if uo (E', V') > po(E, V), then Hom ((E',V'),(E,V)) =0;

o if io (B, V') = uo(E, V) and both objects are a-stable, then Hom((E', V'), (E,V)) is C
if the 2 objects are isomorphic, zero otherwise.

Moreover, let us suppose that (E', V') is ac-stable, that (E,V) is a.-semistabe and let o
be a non-zero morphism (E', V') — (E, V). Then the image of « is isomorphic to (E',V').

The following definition is taken from [Hel §1.2]. In that paper the definition is given for
families of algebraic systems, we state only the definition for the case of families of coherent
systems.

Definition 1.0.10. Let S be any scheme, let (£,V) and (£',V’) be two families of coherent
systems parametrized by S and let us denote by mg the projection C' x S — S. Then we define
a sheaf of Og-modules



13

F = Homag (€', V), (£, V)

on S as follows: for every open set U C S we set

FU) = Hom((€, V), (€, V)v) = Hom (€], 21 V0): (€l VIer) ) -
This is actually a sheaf and the functor Hom,((E',V’), —) is left exact. We denote by
Exth ((E,V),—) Vix1

its right derived functors. If S = Spec(C), then a family (£’,)’) parametrized by S is simply
a coherent system (E’, V') and the previous functors are the derived functors of the functor
Hom((E', V'), —), so we denote them by Ext?((E’, V'), —).

By using remark and [Hel corollaire 1.20| for the projection g : C' x S — S we have
the following useful result of semicontinuity.

Proposition 1.0.5. Let (£,V) and (£',V') be two families of coherent systems (not necessarily
of the same type), parametrized by the same scheme S. Then for all i > 0 the function

ti(s) := dim Ext'((E',V)s, (E,V)s)

is upper semicontinuous on S. If S is integral and for a certain i the function t'(s) is constant

on S, then the sheaf Extl ((E',V"),(E,V")) is locally free on S.
We recall also a result from [BGMN], stated here with slightly different notations.

Lemma 1.0.6. ([BGMN, lemma 6.3]) Let (E,V) be a coherent system of type (n,d, k) and
let ae be a critical value for (n,d, k).

(i) Let us suppose that (E,V) is o} -stable but o -unstable. Then (E,V) appears as the
middle term in a non-trivial extension:

0= (E1, Vi) -2 (B, V) -5 (B, Vb) — 0 (1.4)
i which
(a) (E1, V1) and (Eo,Va) are both o -stable with

Maj'(Elv Vl) < :U’a;"(Ea V) < :uaj‘(EQ"/Z);

(b) (E1,V1) and (E2,Va) are both a.-semistable with

/’LQC(E:L? ‘/1) = Mac(E? V) = /’Lac(E27 V2))

(c) ki/ni is a mazimum among all proper subsystems (E1,V1) C (E,V) which satisfy

(b);
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(d) ny is a minimum among all proper subsystems (E1, V1) that satisfy (c).

(1) Similarly, if (E,V) is o -stable but o -unstable, then (E, V') appears as the middle term
i a non-trivial extension i which

(a) (E1, V1) and (E2,Va) are both o -stable with

Moz (Eb Vvl) < Moz (Ea V) < Haz (E27 V2);
(b) (E1,V1) and (Ea,V2) are both a.-semistable with

/’Lac(E17 Vl) = /’Lac(E7 V) = /’LOZC(E27 V2)7
(c) k1/n1 is a minimum among all proper subsystems (E1, V1) C (E, V) which satisfy

(b);

(d) ni is a minimum among all proper subsystems (Eq,V1) that satisfy (c).

Remark 1.0.5. In the original lemma it is not written explicitly that the sequence is
non-split, but actually this is an easy computation. Indeed, if that sequence is split, then we
have (E,V) ~ (E1, V1) @ (Ea, V), which cannot be a-stable for any a.

Remark 1.0.6. Using condition (i-b), condition (i-a) can be restated saying that % < k< %
and analogously condition (ii-a) can be restated saying that % > % > %

Remark 1.0.7. Obviously also the extensions obtained by by multiplication by scalars
in C* do satisfy properties (a)-(d), so the extension with representative can at most
be unique only up to an action of C*. Moreover, as we will see in the following chapters,
in general such an extension will not be unique also after quotienting by C*. First of all,
this is because the numerical conditions (a)-(d) in general are not sufficient to get uniqueness
of (E1,V1). Moreover, we can have problems if the automorphism groups of (E7, Vi) or of
(Es, Va) are larger than C*: in this case even if the objects (F;, V;)’s are unique, the class of
the extension is not unique. Finally, we have problems if (E, V') contains a subobject of
the form (E1, V1) @ (E1, V1); in this case even if (Eq, Vi) is unique with C* as automorphism
group, the morphism « is not uniquely determined up to scalars. An analogous problem can
occur if there is a quotient (E, V) — (Ea, Va) @ (E2, V2).

Proposition 1.0.7. [BGMN, proposition 3.2] Let (E1,V1) and (E2,Va) be two coherent sys-
tems on C of types (n1,d1, k1) and (na,ds, ko) respectively. Let

HY, := Hom((Ea, Va), (E1, V1)) and H3, := Ext*((Es, Vo), (B, V1)).
Then:

dim Ext' ((Eq, V), (E1,V1)) = Ca1 + dim HY, + dim H3,,

where

Cy1 = nlng(g — 1) —ding + dony + kody — k2n1(g — 1) — k1ko.



Chapter 2

Filtrations for semistable coherent
systems

In this chapter we state some general properties of Jordan-Hélder filtrations and we also
introduce a slightly different notion of filtration that will be useful in the next chapter. In
general, we will be only interested in filtrations for coherent systems of type (n,d, k) that are
(strictly) semistable at a value o, that is critical for (n,d, k). This is the only interesting case,
otherwise we end up with the trivial filtration.

2.1 Canonical filtrations

Since Jordan-Holder filtrations in general are not unique, we look for some unique filtration.
The basic idea is the same of [GM]. In order to find such a unique filtration, we first state

this preliminary lemma.

Lemma 2.1.1. Let us fix any ac.-semistable coherent system (E, V) with ac-slope p and let

us consider the set:

S =S8(E,V) := {all non-trivial coherent subsystems of (E,V)

which are direct sums of a.-stable coherent systems with a.-slope p}.

Then this set is non-empty and it admits a unique maximal element with respect to inclu-

S10NS.

Proof. S is nonempty (because it contains the first term of every a.-JHF of (E,V)) and it
is partially ordered by inclusions. By proposition we are in a noetherian category, so
we get that there exists at least a maximal element, that we denote by (F1,V;). Now by
contradiction, let us suppose that we have also another (El,vl) which is a maximal object
of S. If we have that F; N E; is the zero sheaf, then the direct sum of (Eq, V) and (El, 171)
contradicts the maximality of both. Hence we can suppose that ﬂEl is not the trivial sheaf.

15
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Then let us consider the morphism of coherent systems:

¢: (B, Vi) = (B, V) > (E,V)/(E1, V).

The last object is again an a.-semistable coherent system with a.-slope p by proposition

1.0.1] ¢ is not the zero morphism since (E1, V1) # (E1, V1). Again by proposition the
category of a.-semistable coherent systems of a.-slope p is an abelian category, hence there

exists a kernel for ¢ in that category. Let us write (E,V) := Ker(p); then we have an exact
sequence of the form:

0o (B, V)% (E,V1) -2 (B, V)/(E1, V1) = (E/Ey, V/VA). (2.1)

Then by definition of exact sequence of coherent systems we get an exact sequence of
vector bundles:

0—FE — E, — E/Ey;

hence E = F, N E; (the part on the right a priori is just a sheaf, but since it is equal to E,
then it is a vector bundle). Moreover, we get exact sequences of vector spaces:

0 — HY%E) — HYE,) — HYE/E))
U U U (2.2)
0 — Vv — Vi — V/Vi,

where the second line is exact by 1’ Hence we get that V = Vi NV} (where the intersection
is made in H°(E) that contains both Vi and V;). Then we can consider the exact sequence
induced by a:

0— (E1 N El,Vl N ‘71) 2 (El,V1> ﬁ) (El,Vl)/(El N El,Vl N ‘71) — 0. (2.3)

Since (E1,Vi) # (E1,Vi), then (E; N E1, Vi N V) is strictly contained in (Ey, Vi); by
construction (E7, Vi) is the sum of a.-stable coherent systems of ac-slope p, so there exists
an object (E', V') C (Ey, V1) that is ac-stable and that is not completely contained in the
image of a. Now let us denote by (E”, V") the image of (E’, V') under 8; by exactness of
, we have that 3|(gr vy is non-zero. Then by lemma m the image (E", V") of (E', V")
is isomorphic to (E’, V'), so it is a.-stable with a.-slope p.

If do the same construction for all the (E’, V')’s that are a.-stable factors of (Eq, Vi) not

contained in (E7 N Ei,Vin ‘71), we get a split v of 1 , S0 that:

(By, Vi) = (Ey N By, ViN Vi) @ Im(y) =~
2(ElﬂEl,VlﬂVl)@(El,vl)/(ElﬂEl,Vlﬂvl). (2.4)

Analogously, we can consider the morphism
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¢ (B, V1) = (B, V) — (BE,V)/(E1, W)

and its kernel. Then the same explicit description given before for Ker(y) proves that Ker(p)
is equal to (E1 N E1,ViNVy) = (EyNE,ViNVy) = Ker(p). Hence by proceeding as before
we get an exact sequence:

0— (E1 ﬁEl,Vl ﬂfﬁ) 2 (El,ﬁ) E) (El,"?l)/(El ﬂEl,Vl ﬂ‘71> —0

and a split 7 of it such that:

2(ElﬂEl,VlﬂVl)@(El,Vl)/(ElﬂEl,Vlﬂvl). (2.5)

Note that by construction all the terms of the splittings and are non-trivial and
consist of direct sums of a.-stable coherent systems with a.-slope p. Now by considering only
the part related to vector bundles, we get that Im(y) NIm(7) = 0 in E. Hence it makes sense
to consider the coherent subsystem of (E, V') given by:

(Ey N Ey,ViN Vi) @ Im(y) ® Im(3).

By construction, this is again a direct sum of a.-stable coherent systems with ac.-slope
w. Since Im(y) and Im(5) are both non-trivial, the new coherent system strictly contains
both (E1,Vi) and (E1,V3), and so it contradicts their maximality in S. Hence (Ey, Vi) is
unique. O

Lemma 2.1.2. Let us firx any ac-semistable coherent system (E, V) with cc-slope p. Then
there exists o unique filtration

0= (Eo, Vo) C (E1,V1) C -+ C (Es,Vs) = (E,V) (2.6)
such that:

(i) for alli=1,--- s the quotients (E;,V;)/(E;—1,Vi—1) are direct sums of a.-stable coher-
ent sheaves with ac-slope p;

(ii) for alli=1,--- s the coherent systems (E,V)/(E;—1,Vi—1) don’t contain any coherent
subsystem which is the direct sum of (E;,V;)/(E;i—1, Vi—1) with an «a,-stable coherent
system with a.-slope ;

(iii) the graded associated to this filtration coincides with the graded associated to an a.-JHF
of (E,V);

(w) if the ae-JHF of (E,V) is unique, it coincides with (2.6]);

(v) if [2.6) is an a.-Jordan-Hélder filtration, then it is the unique o.-Jordan-Hélder filtration
of (E,V).
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Definition 2.1.1. We will say that is the ac-canonical filtration associated to (E,V).
We will say that such a filtration is of type (¢1,--- ,ts) if for each ¢ = 1, -- | s we have that the
ac-semistable coherent system (E;, V;)/(Fi—1,Vi—1) is the direct sum of ¢; a.-stable coherent
systems. In particular, we will have that ¢; + --- 4 t5 coincides with the length r of any ac-
Jordan-Holder filtration of (E, V). Moreover, (F,V) has unique a.-Jordan-Hélder filtration
if and only if its a.-canonical filtration is of type (1,---,1) (r times).

Proof. 1f (E,V) is a.-stable, there’s nothing to prove. Otherwise, properties (i) and (ii) force
the first term of to be equal to the maximal element (Eq, V) of S(E, V). Actually, if
we choose that coherent subsystem, we get that it obviously satisfies both properties (i) and
(ii) for ¢ = 1. Then we can consider (E,V)/(E1, V1): by proposition this is again .-
semistable with ac-slope p, so we can apply the same procedure to the set S((E,V)/(E1, V1))
to get the term (E2, V3) of , and so on. Since the rank of the coherent system is strictly
decreasing at each step, after finitely many steps we get a filtration that satisfies prop-
erties (i) and (ii) for all = 1,--- ,s. Using lemma at each step, we get that each term
of the filtration is unique, hence is unique.

Now let us consider the first term (FE1, V1) of the filtration (2.6): since it a.-polystable,
then it is a-semistable, hence it appears in some a.-JHF of (E, V). So the graded of (E,V)
associated to that filtration is equal to the direct sum of the graded of (Eq, V1) and of the
graded of (E,V)/(E1, V1). Since (Eq, Vi) is the sum of a, stable coherent systems, it is obvious
that a graded for it coincides with (E1, Vi) = (E1,V1)/(Eo, Vo). Then we have that:

g1, (B, V) = (B0, Vi) @ gro, ((B,V)/(E1, W) ).

Then we can apply the same procedure to (E,V)/(E1,V1); by induction we conclude that
there exists an a.-JHF of (E, V') that completes (2.6) and such that:

8o (B, V) = ®i=1,.. «(E:, Vi) /(Ei-1, Vic1).

So this proves property (iii). Now let us prove also (iv): by construction of a.-JHF, we get
that the first term of any a.-JHF of (E,V) is given as a minimal element of S(E,V), i.e. an
ae-stable coherent subsystem of (E, V). If the a.-JHF is unique, this implies that there are
no direct sums of 2 or more coherent systems as subobject of (E, V) with a-slope u, so the
set S(F, V) consists of a unique element, hence its maximal object coincides with the minimal
one. By construction, the maximal object is the first term of , hence we have proved
that the first term of the unique a.-JHF of (E, V) coincides with the first term of (2.6)). Then
in order to conclude, it suffices to consider the coherent system (E,V')/(E1, V1) and to apply
induction on it.

Conversely, if is an ac-Jordan-Holder filtration, then this means that (E1, Vi) is .-
stable (and not only a.-polystable). By construction we know that (Eq, V) is the maximal
object of S(E,V); therefore S(E, V') consists of a single element. By definition of a,-Jordan-
Holder filtration, the term (E7, V1) of an a.-Jordan-Hoélder filtration is any minimal object of
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S(E,V). Therefore, any a.-Jordan-Holder filtration of (£, V') has the same first term, namely
(E1,V1). Then we consider the coherent system (E,V)/(E1, V1) and we apply induction on
it. O

Now we need a way to characterize canonical filtrations. This is taken into account by the
following proposition.

Proposition 2.1.3. Let (E;,V;)i=1,..+ be a filtration of a coherent system (E,V') such that
the coherent systems (E;, V;)/(E;—1,Vi—1) are all a.-polystable with the same a.-slope p for
alli=1,---,t. Then the following facts are equivalent

(a) (Ei,Vi)i=1,... + is the ac-canonical filtration of (E,V);

(b) for everyi=1,--- t—1, for every a.-stable coherent system (Q, W) with «a.-slope equal
to p and for every morphism

v (Q,W) — (Ev V)/(Ei—lﬂvi—l)7

we have B; oy =0, where B; is the morphism appearing in the induced exact sequence

0 = (Bi, Vi) /(Eic1,Vie1) 25 (B, V) /(Ei1,Vie1) 2 (B, V) /(E;, Vi) = 0;

(c) same statement of (b) but restricted for every fivzed i = 1,--- ;t —1 only to those (Q,W)’s
that appear in the graded of (E,V)/(Ei-1,Vi-1) at o and to v # 0.

Proof. First of all, we will prove that (a) and (b) are equivalent.

Let us suppose that (b) is not verified and let 7 be the smallest index in {1,--- ,¢—1} such
that there exists an a.-stable coherent system (Q, W) with pq.(Q, W) = p and a morphism
v:(Q,W)— (E,V)/(E;i—1,Vi_1) such that 5; oy # 0. In particular, v # 0; since (Q, W) is
ac-stable, then by lemma[1.0.4]it is isomorphic to Im(y). Moreover, since f3; 0y # 0, then we
get that Im(y) ¢ Im(e;), so we can form the coherent subsystem

(Ei, Vi)/(Ei-1,Vie1) © Im(v) C (E,V). (2.7)

By hypothesis (F;, Vi) /(E;—1, Vi—1) is ac-polystable with a.-slope equal to p; since (Q, W)
is a.-stable with the same ac-slope, we get that is the sum of a.-stable coherent systems
with ae-slope p and it is contained in (E,V)/(F;—1,V;—1). So by definition of a.-canonical
filtration the system (E;,V;) cannot be part of the a.-canonical filtration of (E, V), so (a) is
not verified.

Conversely, let us suppose that (b) is satisfied and let {(E/, V/)}i=1 ... s be the a,-canonical
filtration of (E, V). By construction of the a.-canonical filtration, we have that (E,VY) is
the unique maximal element of the set S(E, V'), that is the set of all subsystems of (E,V)

that are a-polystable with a.-slope equal to pu. By hypothesis (Eq, V1) € S(E,V), so we get
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that (E1,V1) C (B, V{). By contradiction, let us suppose that (E1, V1) is strictly contained in
(E1,VY); since both coherent systems are a.-polystable, this implies that there exists an .-
stable coherent system (Q, W) with pq,(Q, W) = p, such that (E1, V1) @ (Q, W) C (E', V).
Then let us define a morphism ~ as the composition:

v QW) = (B, Vi) @ (Q,W) = (B, V]) = (B, V) = (E,V)/(Eo, Vo)

Let us also consider the exact sequence

0= (B, Vi) 25 (B, V) 25 (B, V) /(E1, Vi) — 0.

Since we are assuming (b), we get that 51 oy = 0, then by exactness of this sequence we
get that there exists 7' : (Q, W) — (FE1, V1) such that v = a1 o4/, but this is impossible by
definition of (Q, W) and of . Therefore we get that necessarily (E1, V1) = (E1,V{). Then we
consider the coherent systems (Fa, V2)/(E1, V1) and (ES,V4)/(E1, Vi) and we use the same
argument; we conclude by induction on the length ¢ of the filtration {(E;, V;)}..

Now obviously (b) implies (c). Conversely, let us fix any a.-stable coherent system (Q, W)
with o, (E,V) = u, together with a morphism v to (E,V)/(E;—1,Vi—1). If v = 0, then
Bioy = 0. Otherwise, by lemmal[1.0.4]y maps isomorphically (Q, W) into a coherent subsystem
(Q',W") of (E,V)/(Fi-1,Vi—1) with po, (Q,W') = u. Then (Q,W) ~ (Q',W') is contained
in the graded of (E,V)/(Ei_1,Vi—1). O

2.2 Jordan-Holder filtrations

Having fixed any «.-semistable coherent system (E, V'), we want to give necessary and
sufficient conditions so that its o.-Jordan-Hoélder filtration is unique. By lemma [2.1.2) we have
that an a.-Jordan-Hoélder filtration of (E,V) is its unique a.-Jordan-Holder filtration if and
only if it coincides with the a.-canonical filtration of (E,V'). We want to restate the conditions
that characterize the canonical filtration in the case when it coincides with a Jordan-Holder
filtration. Then we get the following result.

Proposition 2.2.1. Let us fix any ac-semistable coherent system (E, V) with po, (E,V) =:
w oand any oc-Jordan-Holder filtration {(E;, Vi)}i=1,...» for it, with graded at o given by
®I_1(Q4i, W;). Then the following facts are equivalent:

(a) the filtration {(E;, V;)}i=1,.. r is the unique a.-Jordan-Hoélder filtration of (E,V);
(b) all the sequences

/

Q; B;
0— (Qi, W;) — (Eit1,Vig1)/(Ei—1, Vi) — (Qig1, Wig1) — 0 (2.8)

are non-split forv=1,--- ,r — 1.
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Proof. Let us suppose that the a.-Jordan-Holder filtration is unique and let us prove (b). Let
us fix any index ¢ =1,--- ;7 — 1 and any non-zero morphism

Yi + (Qir1, Wiv1) — (Biy1, Vigr)/(Eio1, Vie1).

Then let us consider the following commutative diagram:

B;
(Bit1,Vig1)/(Eiz1, Vie1) —— (Biy1, Vi) /(B3 Vi)

Bi

(£, V)/(Ei-1,Vi-1) (B, V)/(Ei, V;).

Let us write v := (jo; : (Qit1, Wit1) — (E,V)/(Ei-1, Vi—1). Since the a.-Jordan-Hélder
filtration is unique, it coincides with the a.-canonical filtration by lemma 2.1.2] So we can
use part (b) of proposition [2.1.3] hence ;0 = 0. By commutativity of the previous diagram,
this gives ; o B/ o~; = 0. Since ; is injective, we get 8 oy; = 0. So we have proved that for
every i = 1,--- ,r — 1 there are no splittings for (2.8)).

Conversely, let us suppose that is non-split for all ¢ = 1,--- ,r — 1. We claim that
{(E;, Vi) }i=1,... » is the a-canonical filtration of (E, V). In order to do that, it suffices to prove
condition (b) of proposition So let us fix any index ¢ € {1,--- ,r — 1}, any a,-stable
coherent system (Q, W) with ac-slope p and any non-zero morphism

7:(Q,W) = (E,V)/(Ei-1, Vi-1).

By contradiction, let us suppose that ;0 # 0. Since v has values in (E,V)/(F;—1, Vi—1),
there exists a coherent system (E!, V') containing (F;_1,V;—1) and contained in (F, V), such

that Im(y) = (E!, V/)/(Ei-1,Vi—1). Since fB; oy # 0, we get that (E,V/) # (E;,V;). Since
(E;,V/) is contained in (E, V) = (E,, V), there exists a unique index j € { +1,--- ,7} such
that

(B, Vi) € (E;,V;) and (B, V) & (Bj-1, Vi) (2.9)

Then let us consider the composition

2 (E£7%/)/(Ei717‘/i71) — (E],%)/(E’Lfla V:ifl) -
= (Ej, Vj)/(Ej-1, V1) = (@5, W)).
This morphism is non-zero by (2.9). Moreover, (E!, V/)/(Ei-1,Vi—1) = v(Q,W). Since

(Q, W) is ae-stable, then by lemma also (EI,V/)/(Ei-1,Vi—1) is ac-stable. Also (Q;, W;)

A
is ac-stable by definition of Jordan-Hélder filtration. Then ¢ is an isomorphism by lemma

1.0.4] Now let us consider the embedding 7 defined as follows:
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i (Q,Wy) T= (BLV))/(Eicr, Vier) <= (Ej, Vi) /(Bic1, Vi-1)
Let us consider the short exact sequence

(Bj1,Vi-1) o (B, Vy) 5 (E,V))
(Ei—1,Vio1) (Bio1, Vi) (Ej-1,Vj-1)

where the morphisms « and (8 are easy to guess. Now

0— = (Qj, Wj) — 0, (2.10)

Bon=Bodop .

Let us suppose that §on = 0; then 50 = 0, so by exactness of we have that §
induces an embedding of (E},V/) in (E;_1,Vj_1), but this is impossible by (2.9). Therefore
Bon#0. Since (Qj, W) is ac-stable, we get that 8on = A-id g, w,) for some A € C*. Now
let us consider the commutative diagram with exact rows:

n
0 (Ej—hvr?'—l) (EJ"/J) DN (E77V7) 0
(Fi—1,Vi—1) a (Ei-1,Vi-1) 8 (E;-1,Vj—1)
m ™ m
a4 Bi1
0 (Ej-1,Vj-1) 97 (£5,V;) i- (£5,V5) 0
(Ej-2,Vj-2) (Ej—2,Vj—2) «—— (Fj-1,Vj-1) ’
77;71

where we define 7;_; := mon. By commutativity, it is easy to see that 7;_; makes the second
line split. This contradicts the hypothesis of (b) for j — 1, so we conclude. O



Chapter 3

Technical lemmas

In this chapter we state some results on pullbacks of families of extensions of coherent
systems and tensor products by line bundles. Moreover, we define non-degenerate extensions
and we describe necessary and sufficient conditions for having such kind of extensions.

3.1 Extensions of coherent systems

Definition 3.1.1. Let us fix any scheme S and any pair of families (£, V), (£, V') (of coherent
systems over C') parametrized by S. Then let us define the vector space

Homg((£',V'), (E,V))

as the set of all morphisms («, 3) as described in definition[1.0.8] The functor Homg((£', V'), —)
is right exact. We denote by Exts((£,V), —) its right derived functors. If S = Spec C, we
denote by Ext’((E’, V'), —) the corresponding derived functors. For the relationship between
the functors Exty(—, —)’s and Extl (—,—)’s, see [BGMMN], proposition A.9].

The construction of the functors Ext%(—, —) follows from [He], where the families of co-
herent systems parametrized by S are embedded in a larger category of algebraic systems
on C' x §/S. This larger category is an abelian category with enough injectives, so derived
functors are defined for every right exact functor. Given any pair of families as before, the
sets

ExtL((E,V), (E,V))

are all vector spaces.

The following lemma is a direct consequence of the definition of the functors Exti(—, —)’s
and it is already implicit in the proof of [BGMN] proposition A.9]. The lemma is also stated

explicitly in [BGMNJ, proposition 3.1] in the particular case when S = Spec(C).

Lemma 3.1.1. For all schemes S and for all pairs of families (£,V), (£',V') parametrized
by S, there is a canonical bijection from Exts((E',V'),(E,V)) to the set of all short exact
sequences

23
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0— (E,V) — (F,W) — (£,V) — 0 (3.1)
modulo equivalences.
Here an extension (3.1) is equivalent to an extension

0— (£,V)— (G,2) — (&', V)—0

if and only if there is an isomorphism (F, W) = (G, Z) making the following diagram commute

0o—— (&£,V) (F., W) &) —— o0

0——— (E,V) (EI’V/) 0.

(9, 2)

Proof. This is a standard fact for an abelian category with enough injectives. It is therefore
sufficient to observe that, given a short exact sequence in the category of algebraic systems
on C x S/S for which the left and right hand members are families of coherent systems
parametrized by S, then the whole sequence belongs to the category of coherent systems
parametrized by S. O

3.2 Pullbacks of extensions of families and tensors of extensions
of families by line bundles

Lemma 3.2.1. Let S be any scheme and let

0— (51,V1) — (g,V) — (52,V2) — 0 (32)

be any short exact sequence of families of coherent systems on C parametrized by S. Let
f:8 — S be any morphism of schemes. Then the pullback of via f is an exact sequence
of families of coherent systems parametrized by S’.

Proof. Given the definition of pullbacks of coherent systems, it is enough to remark that
pullbacks of short exact sequences of vector bundles remain short exact. O

Lemma 3.2.2. Let us fir any scheme S and any short exact sequence of families of
coherent systems on C parametrized by S. Let us fix also also any line bundle £ on S. Then
the sequence obtained by tensoring by L is again a short exact sequence.

Proof. Tensoring (3.2)) by £ amounts to tensoring by 7§L an exact sequence of vector bundles
on C' x S and by £ an exact sequence on S, so we get again 2 exact sequences of vector
bundles on C x S and S respectively. If we put together these 2 sequences we get the desired
result. O
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3.3 Non-degenerate extensions

Definition 3.3.1. Let us fix any short exact sequence

0— (B, V') 2% (B,V) 25 (B" V") — 0 (3.3)

of coherent systems with ac-slope p. Let us suppose that

(E/7 V/> = (Ql? Wl)EBtl EB U @ (QT7 WT)GBtT?

where t1,--- ,t, > 1 and (Q;, W;) 2 (Q;, W) for all i # j. If £ is the class of (3.3), then & is
associated to a sequence

(&,---, il’... JEL gl
where every 55 belongs to H; := Ext!'((E”,V"),(Qi,W;)). Then we say that the sequence

(3.3) is non-degenerate on the left (of rank (t1,---,t.)) if for all # = 1,--- ,r we have that
1

t; . . .
i, & are linearly independent in H;.

Definition 3.3.2. Let us fix any short exact sequence (3.3) of coherent systems with «.-slope
. Let us suppose that

(E”7 V”) = (Qh Wl)EBtl DD (QT? WT)EBtTv

where t1,--- ,t, > 1 and (Q;, W;) # (Q;, W;) for all i # j. If £ is the class of (3.3), then £ is
associated to a sequence

(g%a ) ila"' 751%’"' ) f’r)v
where every :Sg belongs to H; := Ext'((Q;, W;), (E',V")). Then we say that the sequence

(3.3) is non-degenerate on the right (of rank (t1,---,t,)) if for all ¢ = 1,--- | r we have that

1 t; . . .
;> & are linearly independent in H;.

Lemma 3.3.1. Let us fix any sequence of coherent systems with ac-slope i, associated to
a sequence (&3, , ?, s &L €Y asin definition and let us suppose that (Q;, W)
s a-stable for every i =1,--- ,r. Then 15 non-degenerate on the left if and only if for
alli=1,---,r and for all quotients (; : (E,V) — (Q;, W;) we have that (; o a = 0.

Proof. Let us suppose that there is any quotient (; such that {; o a # 0. Up to reordering the
(Qi, W;)’s, we can assume that i = 1; we write (Q', W) for the direct sum of all the objects
of (E', V') not isomorphic to (Q1,W1). Since (Q1,W1) % (Q;, W;) for all i # 1, then there
exists (ay, - ,ay ) € C'' {0} such that

0 7& Cl cx = (alv"' 7at170) : (Qlywl)@tl & (Q/>W/> — (QlaW1)~

Up to reordering, we can assume that a; # 0. If t; = 1, then this implies easily that
&1 =0, so we get that (3.3) is degenerate on the left; so we only consider the case when t; > 1.
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Since the target of (7 o « is ac-stable, then such a morphism is surjective and we can
complete to an exact sequence

faq,-,a;, ®id 1w
0— (QuWn)h e @,w) " s @

faliym g ®id(Q’,W/)
—

oa=(ai,,at, ,0
(@1, W) @ (@, W) T (g w) o, (34)
where
_a2/a1 _atl/al
1 . 0
]0(117...’6Lt1 =
0 ... 1

Let & be the class of the sequence (3.3 in

Eth ((E”, V”), (le Wl)@tl D (Q/’ W/))

and let & := (a1, - ,at,,0)(€); so we have a commutative diagram:
a B
0~ (Q, W) & (@, W') — (E,V) (E", V") ——0 3
(a1, ,at,,0) m n Y (a1, ,at,,0)
o ~ ~ B’
0 (Q1,W1) (E,V) (E", V") ——0 ¢,

By the snake lemma and (3.4 we have:

Ker n = Ker (a1, ,at,,0) = (Q1, W1)¥171 @ (Q',W') =Tm o (fay, .ar, ®id(orpr))-

Now by definition of (a1, -- ,as ), we have that

Cl oo (fa17"' ,aty D ld(Q/,W/)) = (a’17 te 7at170) o (fa1,~~- 0ty D ld(Q’,W’)) =0.

Therefore (; is zero on the kernel of 1. So we get that (; induces a non-zero morphisms
¢f from (E,V) = (E,V)/Ker n to (Q1,W1), such that (] on = (3. By commutativity of the
previous diagram, we get that

CiOO/O(CL17"’ 7at170):<ionoa:gloa¢0'

In particular, we get that (] o o/ # 0, so such a morphism belongs to Aut(Qy, W1) = C*.
Therefore (] gives a splitting of the second line of 1 , 80 (a1, ,a4,0)(§) =& =0. So we
get that
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ap &+ +ay - € =0, (3.6)
s0 &, ,fil are linearly dependent.
Conversely, if &1, - - - ,5? are linearly dependent, then there exists a sequence (a1, -+ ,as,) €

Ch \ {0} such that (3.6) holds. Then we have that

(alv e 7at170)(5) =0,
so we have a diagram of the form (3.5 with the second line that is split. So we get a quotient:
G (B, V) = (B, V) = (Q1, W) @ (B", V") > (Q1, W),
A direct check proves that awo (3 = (a1, - ,a¢,,0) # 0, so this is enough to conclude. [

Lemma 3.3.2. Let us fix any sequence of coherent systems with a.-slope p, associated to

a sequence (&5, , fl, s &L ) as in defindtion and let us suppose that (Q;, W;)
s ae-stable for everyi=1,--- ,r. Then is non-degenerate on the right if and only if for
alli=1,---,r and for all morphisms ~; : (Qi, W;) — (E,V) we have that B o~; = 0.

Proof. This is the dual of the proof of lemma [3.3.1] O






Chapter 4

Universal families of extensions

We want to prove a series of statements analogous to those in [L] for families of extensions
of coherent systems instead of families of extensions of coherent sheaves. The statements of
L] are true for every projective morphism f : X — Y. In our case, we have to restrict to
the case when f is the projection mg : X x .S — S for any projective scheme X and for any
noetherian scheme S because we have to use [He, proposition 1.13], that is proved only in this
case. It seems possible to prove results analogous to those of [L] in full generality; anyway for
this work the version we will prove below will be sufficient.

Almost all the results of this chapter hold under the hypothesis that X is any projective
scheme, we don’t require that it is a smooth irreducible projective curve C. Only in the last
section we will restrict to that particular case.

Note that as in [L], we need a flatness hypothesis on the families we will use. Such an
hypothesis is implicit in the definition of families of coherent systems, see remark [1.0.2]

4.1 Cohomology and base change for families of coherent sys-
tems

First of all, we will need to write a statement of cohomology and base change, so we need

a result analogous to [L, corollary 1.2]. In this section we will have to consider every family

of coherent systems as a family of weak coherent systems as in definition [1.0.7] Let us first
state the following preliminary result.

Proposition 4.1.1. Let X be any projective scheme and let (E€,V, ) and (E',V',¢') be two
families of coherent systems over X, parametrized by o noetherian scheme S. Moreover, let us
fix also any noetherian S-scheme u : S" — S. Then there exists a resolution Ay of (E',V', )
such that:

(7’) A0 = (Poa 07 0) S3] (ﬂ.gvl, Vlv idﬁEV')
(it) Aj = (P;,0,0) for all j > 1;

29
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113) P; is locally free on X x S for all 7 > 0;
J

() for all locally free Ogr-modules M, for all j > 0 and for alli > 1 we have ExthS/((u’, u)*Aj,
(ula u)*(57 V, ¢) ®gr M) = 0;

(v) for all j > 0 the sheaf L7 := Homag(Aj, (E,V,8)) is locally free on S.

Proof. The proof consists simply in combining the proof of [He, proposition 1.13] with the
proof of [Ll, lemma 1.1]. Actually, point (iv) holds for every quasi-coherent Og-module M,
once we suitably enlarge the category of coherent systems to take into account also algebraic

systems (see remark [1.0.3]). O

Definition 4.1.1. In the notation of [He|, a very negative resolution of (£',V',¢') with respect
to (€,V,¢) is any resolution A, of (£',V',¢') with properties (i), (ii), (iii) and:

(iv) Eatl (A}, (E,V,¢)) =0forall j >0 and for all ¢ > 1.

Remark 4.1.1. The previous proposition proves that if we fix any morphism u : S — S and
any pair of families (£,V,¢), (',V', ¢') parametrized by S, then the resolution (u/,u)*A, is
a very negative resolution of (u',u)*(&',V', ¢') with respect to (v/,u)*(E,V, ¢) g M for all
locally free Og/-modules M. In particular, if we choose u = idg and M = Og, we get a very
negative resolution of (£',V’, ¢’) with respect to (€,V, ¢).

We recall the following result, obtained from [Hel remarque 1.15] together with remark

02

Lemma 4.1.2. For every noetherian scheme S, for every pair of families (E,V,¢), (£',V', &)
of coherent systems parametrized by S, for every negative resolution Ao of (E',V', @) with
respect to (E,V,¢) and for every i > 0 we have a canonical isomorphism of sheaves over S':

Eatl, ((EV,¢),(E,V,0)) = H' (Homag (A, (E,V,0))).

Now let us fix any u : S” — S and any 2 families parametrized by S as before; let A, and
L*® be as in proposition Then we have an analogue of Ll corollary 1.2 (ii)] as follows.

Lemma 4.1.3. For all S-schemes u : S" — S, for all locally free Og-modules M and for all
j >0 there is a canonical isomorphism of sheaves on S’:

Homay, (0 0)* Ay, (0 1) (£,V,0) @5 M) = ') 9 M. (1)
Proof. We have to consider two different cases depending on j.

Case (i) Let us suppose that j > 1. Then for all V open in S’ we have:
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Homzy, () A, () (€,,6) @ M)(V) =
= Hom\/((u’*??j, 0,0)|v, (u*€ @xxg TG M, u*V @5 M, $)|v) =
= Homy (W Py, 1 (1):0,0), (0" @xxsr 75 M, 1wV S5 My, 6lv) ) =
= Homr,, <u’*73j, u™*E @xxs 7T§M> (V).

Therefore, we have:

Homﬂs/ ((u/a U)*A]‘, (u/7 u)*(E,V,¢) ®g M) = Homﬂs/ (ul*Pj7 uE @x s ﬂ-g’M) =

= (WS/)*HOmOXXS, (u/*Pj,u’*S ®X><S’ ﬂg,,/\/l) = (ﬂs/)*(ul*P]\»/ ®X><S’ 'LL/*S ®X><S’ WE,M) =

= (7‘(5/)* <Ul*(7)jv QxS 5) QX xS WE'/M> = (WS’)* <Ul*(7)]v QX xS 5)) g M. (4-2)

Here the third equality is proved using the fact that «*P; is locally free because P; is so.
Analogous computations (with u replaced by idg and M by Og) prove that for all j > 1:

L =Homzg (A}, (E,V,0)) = (75)« (P} ®xx5E) - (4.3)
Now by proposition m (v) we have that £/ is locally free on S; therefore by base change
([Hal IIL, prop. 12.11 and prop. 12.5]) we have:
(g )wt™ (P} @xx5E) = ' mg, (P} @xx5&) =u"L.
Therefore, we have that (4.2)) is equal to u*£? ®g M. So we have proved that (4.1)) is true
for all j > 1.

Case (ii) Let us suppose that j = 0; then we have that Ag = (Po,0,0) & (7&V',V',id).
By the same idea used in the previous case, we have a canonical isomorphism:

Homag, ((u 1) (Po,0,0), (', u)* (€, V, 9) 050 M) =

= Homes ((P0,0,0), (€,V,0)) @5 M,

Therefore, in order to prove that (4.1) is still valid for j = 0, it suffices to prove that there
is a canonical isomorphism:

Homeg, (o, )" (5, V', 1d), ()" (€,, 6) g M) =

2

= wHomy ((75V'V,1d), (€,V,0)) @5 M. (4.4)

Now for every open set V in S’ we have:
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Homa,, (o, w)* (x5V, V', id), (', w)* (€. V,6) @5 M) (V) = (45)

= Homy ((u’*wgvl, U*V/, ia)h/, (u'*E R x xS’ FE/M, u*Y Qg M, a)’\/)

where id is given by the composition:

~ u/*(id
id: mgutV s gV Y u*rgV

and 7 is the canonical isomorphism induced by 7g o v/ = u o wg,. Therefore, id = n is an
isomorphism. Hence ({4.5)) is the set of all pairs («, ) of the form:

v IxX ok Y)! /% *
o u* gy |7r;/1(v) — (W€ dx s WS/M)’ﬂgll(V),

B:uV |y — (Y ®s M)|v

such that they make this diagram commute:

% %))/ m"_;/l(v) , ,
* *
TouV ’wg,l(V) TV 2 —1(v)
7"2//8 m e
7[‘?;'/ (U*V ®Sl M)‘ﬂ';,lv — (ul*g ®X><Sl WE/M)‘T{_;} (V)
¢|w;,1<V>

Therefore, « is completely determined as

~ -1
= ¢‘ﬂ§}(v) o (mgfB) o <77’7r§,1(v)) :
So, having fixed (7£V',V',id), (€,V,¢), u: S’ — S and M, we have that (4.5)) is naturally
identified with the set of all morphisms 5 as before, i.e. with the set
Homv(u*V’\V, u'V Qg M|V) = ’Homos, (u*vl, u'Y Qg M)(V)
Therefore, the left hand side of (4.4)) is given by:

HOmOS, (U*V,, u*Y Qg /\/l) = u*V"V ®Rg UV Rgr M =
= u*(V’V ®sV) Ry M= u*Homog V', V) @g M.
Here we used several times the fact that V' is locally free on S. By using exactly the same

technique, we can prove that also the right hand side of (4.4) is given by the same expression,
so we conclude. O
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With the same ideas we can also prove the following result; we omit the proof since it is
quite similar to the previous one.

Lemma 4.1.4. For all S-schemes v : S" — S, for all locally free Og-modules M and for all
j >0 there is a canonical isomorphism of sheaves on S’:
Homar,, ((u’, u)*Aj @g M, (W, u)*(E,V, ¢)) ~ur Ll @9 MY,

Lemma 4.1.5. For every pair of families as before parametrized by S, for every morphism of
noetherian schemes u : S’ — S, for every locally free Og-module M and for every i > 0 we
have:

gxt;:rs/ ((u/7 u)*(glv Vla ¢/)7 (ula U)*(57 V) ¢) s M) =
= HZ (Homﬂsl ((U/, u)*Ah (ulv u)*(ga Vv ¢) X M)>
where Ao is as in proposition [4.1.1].

Proof. Let us consider the pullback (u/,u)*As: by remark we get that it is a very
negative resolution of (u',u)*(E’, V', ¢’) with respect to (uv/,u)*(E,V,d) @5 M for all locally
free Og-modules M. Therefore we can use lemma[4.1.2] for the families (u/, u)*(€’,V’, ¢/) and
(v, u)*(€,V,¢) ®sr M over S’ and we conclude. O

Now if we combine lemma with the canonical isomorphism of lemma [4.1.3] we get
the following statement, that is analogous to [Ll cor. 1.2.ii.

Lemma 4.1.6. For every i > 0, for every morphism u : S — S and for every locally free
Ogr-module M we have a canonical isomorphism of sheaves over S':
Extl, (<u’7 w* (& V), (W) (E,V,¢) @ M) = H ('L @y M)

where L® is as in proposition[.1.1. Since L® is a complex of locally free sheaves on S by that
proposition, this implies that the sheaf on the left is coherent on S’.

Now for every locally free Og-module M and for every ¢ > 0, we define

THM) = H(L* @5 M) = Eatl ((€V0),(E.V,6) 5 M),

where the last equality is given by the previous lemma with v = idg. By [Hal III, proposition
12.5] we get natural homomorphisms for every i > 0:

(i, M) : THOg) @g M — TH(M).

Moreover, for every morphism u : S’ — S by using the same computation as [Ha, ITI,
proposition 9.3 and remark 9.3.1] we get the base change homomorphism:

7 (u) : u*é’xtfrs ((5/7 V., (E,V, gb)) — Extfrsl ((u', w)*(E V), (W u)*(E,V, ¢))
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In addition, by using again a resolution A, as in proposition together with [Hal III,
proposition 9.3], we get the following result.

Proposition 4.1.7. For every flat morphism u : 8" — S of noetherian schemes and for every
i >0, the base change homomorphism 7' (u) is an isomorphism.

This is exactly [Hel, théoréme 1.16 (i)], but with a more explicit construction of such an
isomorphism, that was not described in that work. Moreover, by proceeding as in [Hal, IT1.12]
we get the following result.

Proposition 4.1.8. (cohomology and base change for families of coherent systems) Let X be
a projective scheme, S any noetherian scheme and let (£,V,¢) and (E',V',¢') be two families
of coherent systems on X, parametrized by S. Let s be any point in S and let us assume that
the base change homomorphism

ri(s) : Eath, ((€V,6),(€,V,0)) @ k(s) = But ((€,V, ), (£,V,0)s )

1s surjective. Then:

(i) there is an open neighborhood U of s in S such that T'(s') is an isomorphism for all s’

m U;

(it) T'71(s) is surjective if and only if Extl ((El,V', ), (E,V, ¢)) is locally free in an open
neighborhood of s in S.

According to the usual definitions for coherent sheaves, if 7¢(s) is an isomorphism for all s
in S, then we will say that Ext? ((5’, V¢, (€Y, ¢)) commutes with base change. If this is
the case, then 7¢(u) is an isomorphism for all morphisms u : S’ — S of noetherian schemes.

Remark 4.1.2. From now on, we will not need to refer explicitly to the maps of the form ¢,
so in the following lemmas and propositions we will use the notation of definition [1.0.6]

Exactly as in [[} lemma 4.1], we can prove the following consequence of lemma [£.1.3]

Lemma 4.1.9. For every scheme S, for every pair of families (€,V), (£',V') parametrized by
S, for every locally free Og-module M and for every ¢ > 0, there are canonical isomorphisms

eath (€, (€,V)) @5 M = Eatl, ((£,V), (£,V) @5 M) =
~ gatl, ((€,V) @5 MY, (E,V)).

Lemma 4.1.10. Let us suppose that Ext]. ((5’,]2’), (5,]))) commutes with base change and

that Hom((é”,V’)s, (S,V)S> =0 for all s in S. Then for every S-scheme u : S" — S and for
every locally free Ogr-module M, we have a canonical isomorphism:

~

p: Butl ((u',u)*(gf, VY, (i, u)*(E,V) @ M) ~
:> HO (S,> gmt}rs/ ((’U/, U)*(g,a Vl)) (ulv u)*(é’, V)) X M)

The same conclusion holds if we assume that S is affine.
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Proof. We recall that by [BGMMN] proposition A.9|, there is a spectral sequence

HP (S’, Extd, ((u', WHEV), () (E,V) O M)) =
= Eth_"—q ((Uj, u)*(f/’/, V,)a (u/a U)*(g, V) X M) .

This induces a long exact sequence:

0— H! <S’, Homa,, <(u’, WHELV, (W) (E,V) ®g M)) =
— Extl, ((u’, W (ELV, (W) (E,V) @ M) Lt
£ o (5’, Eatl ((u’, W)*(EV), (i, u)*(E,V) @ M)) =
— H? (5’, Homa,, ((u’, WHELVY, (W) (E, V) ®g M)) S (4.6)

Now let us assume the first hypothesis. If Hom((g’, Vs, (€, V)S) =0 for all s € S, then
this implies that the base change morphisms 7°(s) are surjective for all s in S. Therefore, by
base change Hom,, ((u’,u)*(é”,V/), (u’,u)*(E,V)> = 0; moreover, by lemma [4.1.9| (over S’

instead of §) and base change we have that

Hom, (0, u)* (€1, V), ()" (€.V) @5 M) =
= Hom,, ((u’, w)*(E V), (W, u)* (€, V)) ©5 M = u*Homn, ((5', V), (€, V)) g M =0.

So by substituting in the previous long exact sequence we get that there is an isomorphism

4 : Bxtl, ((u',u)*(gf, V), (W, u)*(E, V) @ M) at
5 HO(S Eatl, () (V). (W, 0) (€, V) 9 M) ).
Then we can apply again lemma (over S’ instead of S) for i = 1 and we get the

result. If we assume that S is affine, then both the first and the last term of the previous long
exact sequence are zero, so we conclude as before. ]

4.2 Families of (classes of) extensions

Let us consider any scheme S and any pair of families parametrized by S as before.
Moreover, let us consider any extension of (£/,V) by (€,V):

0— (E,V) — (F, W) — (£,V) — 0;
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according to lemma we can consider this as a representative of an object in Extg((£,
V'), (€,V)). Then for every point s in S the pullback of such an exact sequence to X = X x{s}
gives rise to an extension:

0— (E,V)s — (F,W)s — (E',V)s — 0.

Therefore, by lemma we get a well defined map:

@, Exth((£,V), (£,V) = Ext! ((€V)s, (€.V)s).
As in L], we give the definition of family of extensions as follows:

Definition 4.2.1. A family of (classes of) extensions of (£',V') by (£,V) over S is any
family

{es € Ext! ((5', Ve (€, V)S)}

ses

such that there is an open covering 4 = {U;};c; of S and for each i € I there is an element
o; in ExtlUi((E’,V’)|Ui, (E,V)\Ui> such that es = ®; 5(0;) for every s in S and for every i € T
such that s € U;. Here ®; 5 denotes the canonical map

®; . : Bxt}; ((5/, Wlu, (€, V)]Ui) ~ Ext! ((5', Vs, (€, V)s>.

A family of extensions is called globally defined if the covering 4 can be taken to be §
itself.

For every s in S, let us define the canonical homomorphism

ot Etl ((5’, V), (€, V)) — Extl ((5’, V), (€, V)) ® k(s).
Then we get a result analogous to that of [L lemma 2.1].

Lemma 4.2.1. For every s in S, the map @5 coincides with the composition:

0 Ls
Buty((£,V),(6.V)) L5 10(8, €atl (€, V), (€,)) )
0(ss
) o (5. €xti, (€ V), (€V)) @ k(s)) =
1 RS, T(s) 1 RS
= gatt ((&,V),(E,V) @ k(s) = Bot! (€, V)5, (E,V),)
where T1(s) is the base change homomorphism induced by the inclusion of s in S and p is the

map described in with u = idg and M = Og (u is not necessarily an isomorphism in
this case).
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Having fixed (£,V) and (€',V), we define

EXT((E,V'), (E,V))

as the set of all the families of extensions between these two families of coherent systems. It
is clear that such a set has a natural structure of vector space, so we would like to describe
an isomorphism of it with some known vector space. First of all, we will give the description
of the subvector space

EXTglob((gla V/)? (5’ V))

consisting of those families of extensions that are globally defined. By definition, every globally
defined family is induced by an element of Ext5((€',V"), (£,V)), but two elements of such a
space can sometimes define the same family. The following proposition tells exactly when this
happens.

Proposition 4.2.2. Let us suppose that S is reduced and that Ext} ((E',V"), (E,V)) com-
mutes with base change. Then there is a canonical isomorphism between the set EXTg0((E',V'),

(€,V)) and
Eatg((€',V), (E,V))/H (S, Homxs ((€',V),(E,V))) C
C HY(S, Extr ((E,V"), (E,V))).

Proof. For every class of extensions o € Ext§((£',V'), (€,V)), by lemma the family

{@s(0) = (71(5) 0 H (1) © 1) (0) }ses
is a globally defined family of extensions of (£',V') by (£,V) over S. Let us consider the
exact sequence ({4.6) of lemma [4.1.10] (with u = idg and M = Og) and let us denote by & the
morphism induced by (4.6):

H = ExtL((,V), (E,V))/H (S, Hom~. (€', V'), (E,V))) 5
B HO(S, Extl ((E,V), (€,V))).

Now let us consider the set map f defined from H to EXTyy as follows: for every class
[o] in H we associate to it the family

f(lo]) = A{(7(s) 0 H(s5) 0 i) ([0])}ses = {7"(s) © H'(15) © () }ses-

Now [z is injective by construction and by (4.6). Moreover the family {is}scs is injective
by using Nakayama’s lemma and the fact that S is reduced by hypothesis. So also the family
{H (15)}ses is injective. In addition, every 71(s) is an isomorphism by hypothesis (base change
for i = 1), so in particular it is injective. Therefore the set map f is injective. Moreover, f
is surjective by definition of globally defined family and by lemma Finally, this map is
clearly linear, so we get the desired isomorphism. O
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Proposition 4.2.3. Let us assume the same hypotheses as for proposition|[{.2.3. Then there is
a canonical isomorphism between the set EXT((E',V'), (€,V)) and HY(S, Extl ((E',V'), (E,V))).

Proof. Let us fix any o € HO(S,Extl ((E',V"), (£,V))), let Y = {Us}ier be any open affine
covering of S and let o; := o|y,. By the second part of lemma [4.1.10| for v : U; — S and
M = Og, for all i € I we have an isomorphism

M Ethlji((glv V/)‘UN (57 V)‘Uz) = HO(Ui7€xt7lr5((8/7 V,)v (87 V))‘Uz) (47)

For every point s € U;, we define e5 := ®; s(ui_l(az-)); a direct check proves that such an ex-
tension is well defined, i.e. it depends only on s and not on i. So the family {e;}ses is a family
of extensions of (£,V’) by (£,V) over S. Since o is a global section of Ext} ((£',V"),(£,V)),
a direct computation shows that such a family does not depend on the choice of the affine
covering . So we get a well defined set map

HO(Eatl ((€',V), (€,V))) — EXT((E', V), (£, V)). (4.8)
We explicitly describe an inverse for such a map. Let {es}ses be any family in the set
EXT(—, —). By definition of family of extensions, there is an open covering { = {U; };er of S
and for every ¢ there is an object
g € Exty, (€, V)|vs, (€. V)]u,)
such that e, = ®; 5(0;) for all s € U;. Without loss of generality, we can assume that 4l is an
affine covering. Therefore we can use (4.7)) and we define
0; = pi(6;) € HO (U, Extr (€1, V'), (€, V))).

As in lemma on U; instead of S, we get that for every i € I and for every s in Uj,
the morphism ®; s coincides with the composition:

0 ils
T B0 (U, ath (V). (6,) @ k(s) ) =
= atl, ((€,V), (€.V)) ® k(s) sy Bxt! (€ V) (,V);)
7I'S b b b b Sy ) S .
So for every s € U; we have:
®;5(07) = 7' (s) 0 HO(Us, 1) 0 pi(03) = 7' () 0 HO (Ui, 15)(0) = 7' (5)(04(5)).

Analogously, for every s € U; we have ®;4(5;) = 71(s)(0;(s)). So if s € U; N Uj, then we
have

7' (s)(0i(s)) = 7' (5)(0;(s))-
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By hypothesis, 71(s) is an isomorphism for all s in S, so we conclude that for all pairs 4, j
in I and for all s € U; N U; we have 0;(s) = o;(s). Since S is reduced, we conclude that o;
coincides with o; over U; N U;. So there exists a unique

o€ HOS, Exty (V). (E,V)))

such that o|y, = o; for all i € I. A direct computation shows that o does not depend on the
choice of the covering i nor on the choice of the family {7;}ics, so we get a well defined map

EXT((E, V), (€,V)) = H(ExtL ((E',V), (E,V))). (4.9)
Now it is easy to see that the map in (4.9)) is the inverse of (4.8]), so we conclude. O

4.3 Universal families of extensions

Now let us suppose that Ext ((5’,V’), (S,V)> commutes with base change for i =0, 1.
Then let us define a contravariant functor E from the category of noetherian S-schemes to
the category of sets. For every morphism u : S’ — S, let us consider the pullback diagram:

u/

X x 9 X xS

Tg! O TS

S

!
s w (4.10)

and let us define:

B(S') = H (', Eatl, (/)" (€,V), ()" (€,V)))

We want to make F into a contravariant functor, so for every morphism v : S” — S’ of
noetherian S-schemes we define E(v) : E(S’) — E(S”) as the composition:

HO (', Eath, (o, u) (€, V), (W, u)*(£,V))) — (4.11)
Oy
—s HO (87 vl () (€,V), () (€,V))) T
0 7.1 v
D o (S”,Emt}Ts,/ (W ov ;uov)*(E V), (v ov;uo v)*(S,V))) .

Since we are assuming that Exty ((€',V'),(£,V)) commutes with base change, so does
S:rt}rs,,((u/ ov  uov)*(& V), (v ov',uowv)*(E,V)). Therefore, F is a contravariant functor
from the category of noetherian S-schemes to the category of sets. For the moment we have
not used the fact that Hom.4((€',V"), (€,V)) commutes with base change. We need also this

fact in order to prove that E is representable.
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Proposition 4.3.1. Lel us suppose that Extﬁrs ((5’,]/’), (5,V)> commutes with base change
fori=20,1. Then the functor E is representable by the vector bundle

V=V (€t ((€V),(€,)") T 8
associated to the locally free sheaf Ext]  ((E',V'), (€, W)Y.

Proof. By hypothesis and base change for i = 1, the sheaf £ := Extl (£ V), (E,V)) com-
mutes with base change, so for every S-scheme u : S’ — S we have that

B(S) =H° (9 uExtl ((€V),(E,V))) = H'(S',u*E).

Moreover, using base change for ¢ = 0,1, we get that Eisa locally free sheaf. Therefore,
the functor E is representable by the vector bundle V associated to EV by the universal
property of that object. Note that by assumption E is locally free, so EVY = E. O

Remark 4.3.1. The universal element of E(V') is constructed in the following way. Let us
consider the inclusion of sheaves on S given by EY < 71,0y and the induced canonical
inclusion

HO(S,EndE) = HY(S,E® EV) < H(S,E ® m,.0y) =
= HY(S,m,n*E) = HO(V,nm*E) = E(V).

Then we consider the image of the identity of E under this series of maps and we get that
this is the universal object for the functor E.

By combining this proposition with proposition we get the following corollary.

Corollary 4.3.2. Let us suppose that S is reduced and that Ext’ ((£',V'), (€,V)) commutes
with base change for i = 0,1. Let us denote by @' the morphism X x V. — X x S induced by
7. Then there is a family of extensions {e, ey of (7', m)*(E", V') by (7', 7)*(E,V) over the
vector bundle m: V. — §. Such a family is universal over the category of reduced noetherian

S-schemes.

Here “universal” means the following: given any reduced S-scheme w : S’ — S and any
family of extensions {ey }yeg of (v, u)*(E',V') by (v, u)*(E,V) over S’, there is exactly one
morphism ¢ : S” — V of S-schemes such that {ey }s¢cg is the pullback of {e, }yev via (¢, 1)),
where ¢ is given as follows:
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Tt t % (] TS

u (4.12)

Corollary 4.3.3. Let us suppose that Hom((E',V')s, (E,V)s) = 0 for all s € S and that
Exty ((E',V"),(€,V)) commutes with base change. Let us denote by 7' the morphism X xV —
X x S induced by w. Then there is an extension

0— (7', 1), V) = (Ev,Vy) = (7', m)*(E, V) = 0 (4.13)

over V that is universal on the category of noetherian S-schemes.

Here “universal” means the following: let us fix any noetherian S-scheme u : S’ — S and
any extension
0— (u', u)*(g,V) — (55/, VS/) — (u', u)*(c‘:', V/) —0 (4.14)
over S’. Then there is a unique morphism ¢ : S” — V of S-schemes such that (4.14) is the
pullback of (4.13) via (¢’ 1) where ¢ is as in (4.12)).

Proof. If we assume the hypotheses, then by lemma [4.1.10| for all morphisms u : S" — S we

get a canonical isomorphism
w Extl (o u)*(ELV), (W, u)*(E,V))
= HO(S", Exty, (0, )" (€, V), (u',u)* (€, V))).

If we use proposition and the hypothesis, then this coincides also with

EXTgiop((v/,w)*(E",V"), (W, 0)*(E,V)).

So for every S-scheme S’ as before we can consider the set F(S’) as the set of all extensions
of (W, u)*(&", V") by (v ,u)*(€,V) over S’. In particular, the universal object of the functor E
corresponds to an extension . The universal property of such an object (together with
the fact that u is canonical) then proves the claim. O
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4.4 Universal families of classes of non-split extensions

Let us suppose again that Extl ((5’, V), (€, V)) commutes with base change for i =0, 1.
Then let us define a contravariant functor F' from the category of noetherian S-schemes to
the category of sets. For every morphism u : S — S, let us consider the pullback diagram

(4.10) and let us define:
F(S') = {invertible quotients of Ewt,lrsl (W w)*(EV), (W, u)* (€, V))v }
We want to make F' into a contravariant functor, so let us fix any morphism v : S” — S’
of noetherian S-schemes and any object of F/(S’), i.e. any invertible quotient:
v
Ea:t}rsl ((u',u)*(éﬂ,vl)7 (W, u)*(g,V)> — L — 0.

Then by pullback via v, we get an exact sequence:

\%
v Eath, ((uxu)*(gx V), (W, u)* (€, V)) L 0. (4.15)

Using base change for ¢ = 1 we get:

v*Smt}TS, ((u’,u)*(é”,V’), (u’,u)*(é‘,V))v = (U*Ea:t}TS, ((u’,u)*(S’,V’), (u’,u)*(ﬁ,V)))v ~

~ 5513t71rs,, ((u’ ov;uov)* (& V), (W ov uo v)*(E,V)))v.

Therefore, gives an element of F'(S”), so we get a set map F(v) : F(S") — F(S").
Using again base change for ¢ = 1, it is immediate to prove that this gives rise to a contravariant
functor F on the category of noetherian S-schemes. Actually, in order to define the functor
F we don’t need base change for ¢ = 0; we need also that hypothesis in order to prove that F'
is representable.

Proposition 4.4.1. Let us suppose that Ea:tfrs ((E’,V’), (S,V)> commutes with base change
for i =0,1. Then the functor F is representable by the projective bundle

v
Pi=P(Eath, ((€V),(€,) ) %55
v
associated to the locally free sheaf Ext] ((5’,V’), (5,V)> on S.

Proof. By base change for i = 0, 1, the sheaf E := Extl ((£,V),(€,V)) commutes with base
change and is locally free. Therefore, for every noetherian S-scheme u : S’ — S, F(5’) is
equal to the set of invertible quotients of u*EY. Moreover, since E is locally free, it makes
sense to consider the projective bundle ¢ : P = ]P’(Ev) — S. Now F is representable by that
projective bundle by the universal property of the grassmannian functor associated to every
quasi-coherent Og-module. Note that since Eis locally free, then EVW = F. O
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Remark 4.4.1. The universal element of F'(P) is constructed in the following way. We consider
the canonical isomorphisms:

HO(S,EndE) = HY(S,E® EV) = H(S,E ® 0,0p(1)) =
— HO (5, gp*(w*E ® Op(1)>) — HO(P,o*E @p Op(1)).

Then we consider the image of the identity of F under this series of isomorphisms and we
get that this is a non-vanishing section of ¢*E ®p Op(1). Using base change for i = 1, this
gives a non-vanishing section of

Extr, (¢, )" (EV), (¢, 0)"(€,V) @p Op(1),

so it defines a quotient:

Extr, (¢ 0) (€, V), (¢, 9) (€, V)Y — Op(1) — 0.
This will be the universal object of the functor F.

Definition 4.4.1. Given any scheme S’ and any exact sequence of families of coherent systems
parametrized by S” we call it non-splitting if its restriction to every fiber Xy = X x {s'} over
any point s’ of S’ is non-splitting. Analogously, we call non-splitting any family {ey}secg of
extensions such that each ey is non-splitting.

Lemma 4.4.2. Let us assume the same hypotheses as for the previous proposition. Then for
every S-scheme u : S' — S we have that F(S') is the set of all the families of classes of
non-splitting extensions of (u',u)*(E', V') by (W', u)*(E,V) ®g L with arbitrary L in Pic(S’),
modulo the canonical operation of H°(S', 0%,).

Proof. By construction, F(S’) is equal to the set of all nowhere vanishing global sections of
every sheaf on S’ of the form

gwt}rs/ ((ul7 u>*(8/7 V/)v (ulv u)*(g? V)) g L

with arbitrary £ € Pic(S”), modulo the canonical operation of H(S’, O%,). Since every such £
is in particular locally free, we can use lemma and we conclude by proposition O

The proofs of the following two corollaries are modeled on the proofs of corollaries
and together with lemma and proposition [£.4.1] so we omit the details.

Corollary 4.4.3. Let us suppose that S is reduced and that Extl ((E',V'), (€,V)) com-
mutes with base change for i = 0,1. Let us denote by ¢’ the morphism X x P — X x S
induced by ¢. Then there is a family of non-splitting extensions {eptpep of (¢, )" (€', V')
by (¢, )" (E,V) @p Op(1) over P which is universal on the category of reduced noethe-
rian S-schemes in the following sense: given any reduced noetherian S-scheme u : S’ — S,
any L € Pic(S") and any family {ey}scs of non-splitting extensions of (u',u)*(E', V') by
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(v, u)*(E,V) ®g L over S, then there is a unique morphism of S-schemes 1 : S" — P such
that the family {es }ses is the pullback (modulo the canonical operation of H°(S',O%,)) of

{ep}pep via (Y, 1), where Y is given as follows

u/

m
X x 8 XxP—"" . XxS§
TGl N TP [l TS
"
s P d S.
W
u (4.16)

Corollary 4.4.4. Let us suppose that Hom((E',V)s,(E, V)s) = 0 for all s € S and that
Exty (€', V"), (€,V)) commutes with base change. Let us denote by ' the morphism X x P —
X x S induced by ¢. Then there is a family (Ep,Vp) parametrized by P and a non-splitting
extension:

0= (¢, 9)"(E,V) @p Op(1) = (Ep, VP) = (¢, )" (E,V) = 0 (4.17)

parametrized by P. This extension is universal on the category of noetherian S-schemes in
the following sense: let us fiz any morphism u : 8" — S, any line bundle L € Pic(S’) and any

non-splitting extension

0— (v, u)*(&,V) Ry L — (E5,Vs) = (u/,u)*(E, V') — 0. (4.18)
Then there is a unique morphism of S-schemes ¢ : 8" — P such that is the pullback
(modulo the canonical operation of H°(S', 0%,)) of via (Y, 1)), where ¢ is as in ,

4.5 Universal families of non-degenerate extensions

In the following chapters we will have also to exhibit universal families of non-degenerate
extensions (either on the left or on the right, see definitions [3.3.1 and [3.3.2)). Actually, we
have already described a particular case of non-degenerate extensions, namely the non-split

extensions that we studied in the previous section. The constructions in the present section
generalize the previous ones by allowing the object on the left or on the right of any extension
to be the sum of t > 2 copies of a fixed stable coherent system. We will not consider here the

most general case described in definitions [3.3.1] and [3.3.2] because the results of this section

will be sufficient for the computations of the next chapters.

In the first part of this section we consider the case of non-degenerate extensions on the
left (of rank ¢ > 2).
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Let us fix any integer t > 2 and let us suppose again that Extirs ((5', V), (€, V)) commutes
with base change for i = 0,1. Then let us define a contravariant functor G; from the category
of noetherian S-schemes to the category of sets. For every morphism u : S’ — S, let us
consider the pullback diagram and let us define:

Gi(9') = {locally free quotients of rank t of Ext}rs, (0, w)* (€ V), (W, u)* (€, V))V }

We want to make G; into a contravariant functor, so let us fix any morphism v : " — S’
of noetherian S-schemes and any object of G¢(S’), i.e. any locally free quotient of rank ¢:

v
S:L‘t}rs, ((u’,u)*(c‘:/, V), (' u)* (€, V)) — M —0.

Then by pullback via v, we get an exact sequence:

\
v Eatl ((ul,u)*(c‘:/, V), (o, u)* (€, V)) M s 0, (4.19)

As in the previous section, by base change we get that:

*5 tl (( / )*(5/ Vl) ( / )*(6 V))VN(S‘ tl (( /O / ° )*(5/ V/) ( /o / ° )*(5 V)))V
[ xﬂ's’ u,u s ,\u,u s >~ CT u oV, uov s , (U oV, uov s .

7TSII

Therefore, gives an element of G¢(S”), so we get a set map G¢(v) : G¢(S") — G¢(S").
Using base change for ¢ = 1, this gives rise to a contravariant functor G; on the category of
noetherian S-schemes. Actually, in order to define the functor G; we don’t need base change
for ¢ = 0; we need also that hypothesis in order to prove that G is representable.

Proposition 4.5.1. Let us suppose that 5a:tfrs ((5’,]/’), (8,]/)) commutes with base change
fori=20,1. Then for everyt > 2 the functor G s representable by the relative grassmannian
of rank t

v
Q= Gmss(t,gxt;S <(5',V'), (E,V)) ) s
v
associated to the locally free sheaf Exty. <(5',V’), (5,V)> on S.

Proof. By hypothesis and base change for i = 0,1, the sheaf E := Extr ((EV),(E,V))
commutes with base change and is locally free. Therefore, for every noetherian S-scheme
u: S =8, Gi(S') is equal to the set of locally free quotients of rank ¢ of uw*EY. Now Gy is
represented by the grassmannian bundle 6, : Grass(t, EV) — S by the universal property of
the grassmannian functor associated to every quasi-coherent Og-module. Note that since E
is locally free, then EVV = E. O

Remark 4.5.1. In this case we don’t know how to explicitly describe the universal object of
the functor G;. We ounly know that it will be something of the form

\Y% P
Eatl, (01,007 (E'V), (0,0 (E,V)) = My — 0



46

4. Universal families of extensions

for some locally free sheaf M; on Q; of rank t (it is reasonable that M; is the very ample
sheaf on ; that gives the Pliicker embedding of the relative Grassmannian ()¢ into a projective
space, but we don’t have a proof of this fact). Note that in particular

Vo
q € Homg, (Sxt}rct <(91/57 0,)* (&', V'), (6,,0,)*(E, V)) ,./\/lt) =
= 1°(Qu Eatl,, (16,60 ('), (0,00 (£.V)) ©q, M:) =

= H(Qu, Exth,, (670 (€'V), (61,00 (£, V) 2o, M),
where the last identity comes from lemma since M; is locally free.

Definition 4.5.1. Let us fix any scheme S’, any locally free sheaf of rank ¢ M on S and any
exact sequence of families of coherent systems of the form

0— (55’7 VS/) Rgr M — (]:S/, ZS/) — (gév, Vév) — 0. (4.20)

By restriction to any fiber Xy = X x {s'} over any point s’ of S’, we get a sequence that
is a representative for an object

gs’ € EXt1(<g,/5",s’7 Vé’js’)? (85/,8/7 VS’,S’) (2 Ms’) =
= Eth((g,/S’,s” Vé’,s’)? (85'/751, Vslysl)@t) =: Hsﬁ?t

So we can write & = (£, -+, &%), Then we say that is non-degenerate of rank t
on the left if for all points s’ of S” the objects ¢, for i = 1,--- ¢ are linearly independent in
Hy . Analogously, we call non-degenerate on the left any family {ey }scg of extensions of the
same 2 objects on the left and on the right of such that each ey is non-degenerate. We
can also give analogous definitions for non-degenerate extensions of rank ¢ on the right.

Lemma 4.5.2. Let us assume the same hypotheses as for the previous proposition. Then for
every S-scheme u : S — S we have that G¢(S’) is the set of all the families of classes of
non-degenerate extensions of (u',u)*(E', V") by (v, u)*(E,V) ®s M with arbitrary M locally
free of rank t on S’, modulo the canonical operation of H°(S',GL(t, Og)).

Proof. By construction, G¢(S’) is equal to the set of all nowhere vanishing global sections of
every sheaf on S’ of the form

Eatl,, (W, u)* (€, V), (o u) (€,V)) @5 M

with arbitrary M locally free of rank ¢ on S’, modulo the canonical operation of H°(S’, GL(t,
Og)). Since every such M is locally free, we can use lemma and we conclude by

proposition O

The proofs of the following two corollaries are modeled on the proofs of corollaries
and together with lemma and proposition [£.5.1] so we omit the details.
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Corollary 4.5.3. Let us fiz any t > 2, let us suppose that S is reduced and that Smtﬁrs((é”7 V',
(€,V)) commutes with base change for i = 0,1. Let us denote by 0; the morphism X x Q; —
X x S induced by 0. Then there is a family of non-degenerate extensions of rank t on the left
{eqtecq, of (65,0)*(E', V') by (6;,0,)*(E,V) ®¢, My over Gy which is universal on the category
of reduced noetherian S-schemes in the following sense. Given any reduced noetherian S-
scheme u : S" — S, any locally free sheaf M of rank t on S" and any class of a family {eg }scs
of non-degenerate extensions of rank t on the left of (u',u)*(E, V) by (v, u)*(E,V) ®g M
over S, then there is a unique morphism of S-schemes 1) : S" — Qy, such that the class of the
family {es}ses is the pullback (modulo the canonical operation of H°(S', GL(t,Os/))) of the
class of {eq}qeq, via (V' 1), where ¢’ is given as follows

m
! 9/
X xS X x @ L X xS
g |:] P D TS
” 0
s’ Q: : S
W
u (4.21)

Corollary 4.5.4. Let us fiz any t > 2, let us suppose that Hom ((£',V)s, (E,V)s) = 0 for all
s € S and that Extl ((£,V'),(E,V)) commutes with base change. Let us denote by 0} the
morphism X x Gy — X x S induced by 6;. Then there is a family (Eq,,Vq,) parametrized by
Q: and a non-degenerate extension of rank t on the left:

0= (05, 0:)"(E,V) @, My = (Eq.» V) = (6;,601)"(E",V') = 0 (4.22)

parametrized by Q. This extension is universal on the category of noetherian S-schemes in
the following sense: let us fix any morphism u : S’ — S, any locally free sheaf M of rank t on
S’ and any non-degenerate extension of rank t on the left:

0 — (v, u)*(E,V) @ M = (Es,Vs) — (v, u)*(E',V') — 0. (4.23)

Then there is a unique morphism of S-schemes ) : S" — Qq such that is the pullback
(modulo the canonical operation of HY(S',GL(t,Og))) of via (Y, 1)), where ¢’ is as in
7.21).

Analogously, using the second part of lemma we can prove the following results.

Corollary 4.5.5. Let us fiz any t > 2, let us suppose that S is reduced and that Sxtﬁrs((é”, V),
(€,V)) commutes with base change for i = 0,1. Let us denote by 6, the morphism X X Q¢ —
X x S induced by 0. Then there is o family of non-degenerate extensions of rank t on the right
{eq}qeq, of (0;,0:)*(E',V) ®Qtﬂ;/ by (01, 0:)*(E,V) over Gy which is universal on the category
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of reduced noetherian S-schemes in the following sense. Given any reduced noetherian S-
scheme w : S" — S, any locally free sheaf M of rank t on S" and any class of a family {eg }scg
of non-degenerate extensions of rank t on the right of (uv/,u)*(E", V") ®@s M by (u',u)*(E,V)
over S’, then there is a unique morphism of S-schemes 1) : S — Qy, such that the class of the
family {es}ses is the pullback (modulo the canonical operation of H°(S', GL(t,Og))) of the
class of {eq}qcq, via (V',v), where ' is given as in

Corollary 4.5.6. Let us fiz any t > 2, let us suppose that Hom ((E',V")s, (E,V)s) = 0 for all
s € S and that Extl ((E',V'),(E,V)) commutes with base change. Let us denote by 0} the
morphism X x Q; — X x S induced by 0;. Then there is a family (Eg,,Vq,) parametrized by
Q: and o non-degenerate extension on the right of rank t:

0= (6], 60)"(E,V) = (£, Va,) — (6,6 (€', V) ®g, M| — 0 (4.24)

parametrized by Q. This extension is universal on the category of noetherian S-schemes in
the following sense: let us fix any morphism u : S’ — S, any locally free sheaf M of rank t on
S’ and any non-degenerate extension on the right of rank t:

0— (v, u)*(&,V) = (Es,Vs) = (W, u)"(EV) @9 M — 0. (4.25)

Then there is a unique morphism of S-schemes 1) : S" — Q; such that 15 the pullback
(modulo the canonical operation of H°(S', GL(t,Os/))) of via (Y',1), where ¢’ is as in
4.21)).

4.6 Applications on curves

All the previous constructions work for every projective scheme X and for every noetherian
scheme S (with the additional hypothesis of being reduced or affine in some cases). Now let
us restrict to the case when X is a smooth projective irreducible curve C.

Lemma 4.6.1. Let C' be any smooth projective irreducible curve. Let us firx any noetherian
scheme T and any pair of families of coherent systems (E,V), (£',V') parametrized by T (of
type (n,d, k) and (n',d', k') respectively). Let us suppose that dim Hom((E', V)¢, (E,V)) = ¢
s constant for all t € T. For every a € Ny let us define

Ty = {t €T st dim Ea:t1<(€',V/)t, (S,V)t) = a}.

Then only o finite number of T, ’s is non-empty; moreover, each Ty, is locally closed in T
with the induced reduced structure and it has a covering {To }i consisting of a finite set of
disjoint locally closed reduced subschemes. On each Ty}, the sheaves

Eaty (€W EVr,) fori=0,1,2

are locally free and commute with every noetherian base change to Ty j,. If Tt 1s integral for a
certain o, then the set {To }i coincides with Ty, itself.
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Proof. Let us fix any o € Np; then by proposition [I.0.5] the set T, is locally closed in T with
the induced reduced structure. By [BGMN| proposition 3.2 and lemma 3.3|, the set of T,’s
that are non-empty is finite. Now for each T, let us consider the set {T'}; of its irreducible
components; since we are working in noetherian hypothesis, such a set is finite for each a.
Moreover, each fo is locally closed in T'. In addition, by construction every T, é is reduced and
irreducible, hence integral. Now for every pair (1) (such that T! # @), for every i > 0 and
for every t € T, let us denote by 7%(a,[,t) the base change:

rila, 1) Eatl, ((5', V)|, (€, V)|Té) ® k(t) —» Ext’ ((5’, Vi, (E, V)t>.

Since C' is a curve, for every point ¢t in T we have that

Ext? ((5/, Ve, (, V)t> ~0

Therefore, every 73(a, [, t) is surjective and SactfrT ((8’,V')|Té, (&, V)]T}) = 0, so in par-
ticular it is locally free. Now by using proposition we get that that for every ¢t € T.:

dim Ext?((&", V)i, (E,V);) = (4.26)
= dim Bxt'((&, V), (E,V):) — ¢ — dim Hom((", V'), (E,V)¢) =a— —c

where ¢’ is a constant that depends only on (n,d, k), (n/,d’, k') and on the genus of C. So we
get that for i = 0, 1,2 the dimension of Ext’((£’,V")s, (£,V);) is constant on every T).. Since
every T! is integral, then by proposition we get that on each T the sheaves

eatl,  ((€'V)lny, (E V)l )

are locally free for i = 0,1,2. Then by descending induction and base change (proposition
4.1.8) we can prove that for every i = 0, 1,2, for every pair (,!) and for every ¢ in T the
base change 7(a, [, t) is an isomorphism.

Now let us fix any « and let us denote by L = {l; < --- < [, } the corresponding set of
indices. For each subset {lj < --- <.} C L we denote by {ls+1 < -+ < 10} its complement
in L and we define

/
ils

TH b o (T A ATE) (T U U T, (4.27)

Each such scheme is locally closed in T and any two such schemes are disjoint if they are
associated to different sets of indices; moreover each T, is covered by such subschemes. Then
we denote by k any set of indices k := {l} < --- < [} and by T, the corresponding scheme
defined as in - For each a the set of all such k is finite. Now for each such k, let us

consider the inclusion T}, j — T ! . By base change for ¢ = 0, 1, 2 the sheaves

gat, (€ )tuw EV)Ir,) = (fzxt; (ce", '>Tﬁ,<s,v>\T5)> 7.

TD}
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are locally free for ¢ = 0, 1,2 and commute with base change, so we conclude. O

In particular, we will apply these results in the cases when the constant c is equal to 0
or 1. By using lemma together with the results of the previous 3 sections we get the
following propositions.

Proposition 4.6.2. Let us fix any noetherian scheme T and any pair of families of coherent
systems (E,V), (E',V") parametrized by T. Let us suppose that Hom((E',V' ), (E,V):) has
constant dimension (not necessarily zero) for all t € T. Then there exists a finite covering of
T by disjoint reduced locally closed subschemes T, ;. defined as in lemma such that the
conclusions of corollaries |4.3.2, |4.4.9, [4.5.5 and |{.5.5 hold for each S =T, and for the pair
of families (£',)V')|1,, and (€,V)|r, - If we denote by

Tak - Va,k — Ta,ky Po,k * Pa,k — Ta,lm gt,a,k : Qt,a,k — Ta,k

the vector bundles, the projective and the grassmannian fibrations obtained by those corollaries,
then we get that the fibers of mq 1 are isomorphic to C*, the fibers of o are isomorphic to
P~ and the fibers of Oy ) are isomorphic to Grass(t,a).

If T,y is irreducible for some «, then the covering {Ta.k}i coincides with {T5,}.

Proposition 4.6.3. Let us fix any noetherian scheme T and any pair of families of coherent
systems (E,V), (E',V') parametrized by T. Let us suppose that Hom((E',V' )¢, (E,V)) =0 for
allt € T. Then there exists a finite covering of T by disjoint reduced locally closed subschemes
To ) defined as in the previous lemma, such that the conclusions of corollaries
.54 and|4.5.6 hold for each S = T i and for the pair of families (€',V')|r, , and (€,V)|r, -

The description of the various fibrations that are obtained in this way is the same given in

Previous proposition.

Also in this case if T, is irreducible for some «, then the covering {To}i coincides with

{Ta}-



Chapter 5

Fibrations associated to binary trees

We recall that for every (E,V) that is a.-semistable, the length of any of its a.-JHF is
constant, so we have denoted that number by r, (E,V) (or simply 7(E,V) if a. is fixed).
We need to parametrize any (£, V') with a given Jordan-Hélder graded &]_,(Q;, W;) at ae.
Then the basic idea should be that of considering a binary tree with r leaves representing the
various (Q;, W;)’s and internal nodes representing subsequent classes of extensions of their
descendents on the left and on the right.

In particular, given any (F,V) in GT(ac;n, d, k) one should be interested in applying sev-
eral times lemma [1.0.6] First of all, we should apply it on (E, V), so that we get a tree with
root associated to (E,V) and 2 descendents associated to (Ei, Vi) and (Eq,Vs). Then we
look at the 2 (FE;, V;)’s separately: each of them is af-stable and a.-semistable. If (E;, V;) is
ac-stable, then it is an object of the graded of (E,V) at a., and we stop the construction of
the tree on that side. If it is strictly a.-semistable, then it is necessarily « -unstable, so it
belongs to G (ae; ng, d;, ki), so we can apply again lemma on such an object and we add
2 more nodes on the tree as descendents of (E;, V;). Every time we apply that lemma to some
object, the 2 new nodes that are added represent objects that are «.-semistable (possibly,
ac-stable); the new objects have both strictly smaller length of any Jordan-Holder filtration
at ae. So after finitely many steps one gets a binary tree where the set of the leaves (i.e. those
nodes without descendents) coincides with the set of the ac-stable coherent systems in the
graded of (E,V) at ac.

Every pair of segments joining a node with its 2 descendents should represent a non-split
extension similar to . As we said in remark , we have a natural action of C*, so
actually every pair of segments like that should represent a class of equivalence of such an
extension, modulo multiplication by invertible scalars.

As we said in that remark, in general one does not have uniqueness of the extension ([1.4])
even after quotienting by the action of C*. Anyway, sometimes this can actually happen, so
one should be interested in having a good geometric description of such a situation. The idea
is basically the following. Let us fix some data:

ol
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e any integer r > 2;
e any finite binary tree with r leaves, let us name them from 1 to r, from left to right;
e any triple (n,d, k) and any critical value . for it; we write p := pqo.(n,d, k);

e any triple of invariants (n;, d;, k;) for each leaf i, such that uq,(n;,d;, k;) = p and such
that G(ac; n;, d;, k‘z) 75 .

For each leaf i, we fix a stable coherent system (Q;, W;) in G(ae;n;,d;, k;). Then for each
node N with 2 leaves named i and 7 4+ 1 as descendents, we consider the projective space

P(Ext' ((Qit1, Wit1), (Qi, W5)))

and we fix any [o] in it. If o is represented by an extension with middle term (E’, V'), then
this coherent systems will be associated to the node N. The class [o] will be associated to the
pair of segments from N to its 2 descendents. By finite induction we can associate to every
node of the tree a coherent system. The one associated to the root of the tree will be simply
denoted by (E,V). We would like to globalize such kind of construction by letting vary the
various (Q;, W;)’s in the corresponding moduli spaces any by letting vary also the various [o]’s
in the corresponding vector spaces.

Some caveat are necessary. Since our construction is bottom-up (starting from the various
objects (Q;, W;)’s and obtaining objects of the form (E,V')), in general we can have 2 problems
as follows.

e The (E,V)’s that one gets at the end are certainly a.-semistable by proposition |1.0.1]
but in general they can be not o -stable.

e A fixed (E,V) in G*(a¢;n,d, k) can in general be associated to more than one tree (or,
to the same tree but with different objects in the internal nodes) because of remark

o7

So in general the objects that we will obtain will not be exactly what one needs in order
to describe G (ae;n,d, k). Analogous considerations hold for G~ (a¢;n,d, k). We decided
anyway to give such a description because we think that it is interesting in its own. Moreover,
we will use it directly in the cases when the Jordan-Hé&lder filtration is unique and has length
3 (see next chapter). Note that by globalizing the previous description, in general it will be
possible that some (E,V)’s obtained in the root of a fixed tree belong to G (a.;n, d, k) or to
G~ (a¢;n, d, k) and are counted exactly once, while some other do not satisfy those properties.
Regrettably, it is not possible to say a priori which elements (F,V')’s obtained in that way are
good and which are not interesting for our purposes. Indeed, in order to say something more
one has to know precisely both the shape of the particular tree under consideration and the
moduli spaces we are considering in the leaves of the tree.
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Remark 5.0.1. So in this chapter we will only give a geometric description of certain sets of
sequences of classes of extensions, but with no claim about the final objects (E,V')’s that one
gets on the root of the tree.

Given any binary tree with r > 2 leaves, we denote the root of the tree by (0,r). Starting
from the 2 descendents of the root, for any node N we do the following: we denote by r(N)
the number of leaves under N (in particular »(N) = 1 if and only if N is a leaf); if the node
N is the left descendent of a node M = (a,b), then we write N = (a,a + r(N)); if N is the
right descendent of M, then we write N = (b—r(INV),b). In particular, if N is a leaf, then it is
denoted by (i — 1,4) for some ¢ = 1,--- ,r. By induction on the tree we can prove that every
node (a,b) is such that @ < b; if it is an internal node (i.e. not a leaf), then b —a > 2 and its
2 descendents are of the form (a,c) and (¢, b) for some ¢ € {a+1,--- ,b— 1}.

Now let us fix any triple (n,d, k) and any critical value «. for it; we write p := pq,(n,d, k).
Then we consider any set of data as follows:

e any integer r € {2,--- ,n};

e any binary tree such that it has exactly r leaves; this in particular fixes a finite set of
internal nodes, i.e. those of the form (j,4; —) with 2 descendents of the form (j,1) and
(1,7) with j <1 <1

e for every leaf (i — 1,4) of the tree, a pair (nj—1,ki—1,;) = (n;, ki) € N x Ny such that
the quantity

di—1; = di == n;p — ack;

is an integer and such that the moduli space G(a;n;, d;, k;) is not empty (the definition
of d; is such that pa,(ni,di, ki) = p);

e for all the triples (j,1,7) as before, a non-negative integer e; = e; ;.

Any such set of data will be denoted by Z. If all the data but the last one are clear from
the context, we will simply write = {e; = €1, }(j.i;—)-

For every node (j,7) of a tree, we define its height h(j,47) as the maximum number of
segments needed to reach any of the descendents of that node. In particular, if (j,4) is a leaf,
that number will be considered equal to zero. We denote by H the height of the whole tree,
i.e. H=h(0,r). For every internal node (j,7), we define desc(j,) as the unique integer [ such
that the descendents of that node are (j,1) and (I,7). Moreover, for every internal node (j,1)
of the tree, we define desc(j,4) as the set of all internal nodes of that tree descending from
(j,7) (considered also). Then we fix also the following notation.

e For every leaf (i —1,7) we set G(Z2,i—1,i) := G; = G(ac; ni, d;, k;). We will denote any
object of this moduli space by (Q;, Wj).



5. Fibrations associated to binary trees

e For every internal node (a,b) of the tree, we denote by «, any set of the form

ab = ZGPEtl Ei7vi7E'7V‘ '
= { [0 € PO (B Vi) (B Vi)

Here for every internal node (j,7) we are writing [ := desc(j,¢) and for every o;; we are
considering a representative of it of the form:

j ;
0= (Bj, Vi) 25 (Bjiy Vi) =5 (By, Vi) — 0. (5.1)

Then for every internal node (a, b) we denote by G(Z, a,b) the set of all those ap’s such
that the following conditions are satisfied:

(1) every object of the form (E;_1,, Vi—1,) that appears in any sequence of the form
(5.1) (either on the left or on the right) belongs to G;. Hence it will be also denoted

by (Qi, Wi);

(2) dim Ext! <(El,i, Vi) (Ejvl,VjJ)> = ¢; for all nodes (j,1) in the set desc(a,b), with
I = desc(j,1);

(3) Hom((EM,Vl,i),(Ej,l,Vj,l)> = 0 for all nodes (j,7) in desc(a,b) and with [ =
desc(j,1).

In particular, the first condition induces a set map grop, : G(Z2,a,0) = [[;_qyq.. 4, Gi
that associates to every aqj as before the graded of (Eqp, V).

e For every internal node (a,b) with desc(a,b) = ¢, we denote by F(Z,a,b) the set of all
pairs (aa,c, aep) in G(Z,a,c) x G(Z,c,b) such that

(4) dim Ext! ((Ec,b, Vep)s (Bae, Va,c)) = €c = Cach;
(5) H0m<(Ec7b, V;b), (E(z,ca Va,c)) =0.

Lemma 5.0.4. For each node (a,b;—), condition (3) (and therefore also condition (5)) is
automatically satisfied (and therefore it can be omitted) in each of the following 2 cases:

(i) tro+ (B, Vig) # bor (Eju, Vi) (or the same inequality for pu,,- ) for all (j, i; —) € desc(a, b)
with | = desc(j,1);

(1) (Qi, Wi) #(Qj, Wj) for all i # j € {a+1,---,b}.

Proof. Let us suppose that (i) holds. Since piq, (Epi, Vii) = = pa.(Ejy1, Vj1) by construction,
then (i) implies that either

tor (Bris Vii) > po+ (Ejgs Vin)

or
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Mac— (El,i> W,z) > Mac_ (Ej,lv Vj,l)'

In both cases, lemma implies condition (3).

For the second case, we prove the result only for condition (5); the proof of condition (3)
is analogous. So let us consider the vector space

H0m<(Ec7ba Vab)a (Ea,ca Va,c));

by contradiction, let us suppose that it contains a non-zero morphism n; then if (a,c¢) =
(a,a + 1) this implies that we have a non-zero morphism from (E.p, Vep) to (Qat1, Wat1).
Otherwise, (a, ¢) is an internal node, hence oy . contains an object [0 ] with o, . represented
by:

0— (Ea,dy Va,d) 4 (Ea,a Va,c) L> (Ed,m Vd,c) —0

where d = desc(a, ¢). In that case if yon = 0, this implies that 1 has values in the image of A,
so it induces a non-zero morphism from (E.p, Vep) to (Eq.d, Vo). Otherwise, yon # 0, so we
have a non-zero morphism from (E.p, Vep) to (Ege, Vie). Therefore, by applying induction
on the length of the nodes, we get that 7 induces a non-zero morphism 7’ from (Ecp, Vep) to
some (Ej_1,, Vic1,i) = (Q4, W;) for an index i in {a +1,--- ,c}.

Now let us consider the node (c,b). If it is a leaf, we get that (E.p, Vep) = (Qp, Wh);
otherwise it is an internal node with f := desc(c,b). In this case, oy contains an object [oc ]
with o.p represented by an exact sequence of the form:

0— (Ee,f, Ver) N (Ecp, Vep) i (Etp, Vip) — 0.

If o\ # 0, this is a non-zero morphism from (E. ¢, V. 5) to (Q;, W;); otherwise 7" induces
a non-zero morphism from (Eyp, Vip) ~ (Eep, Vep)/Im(X') to (Q, W;). By applying induction
on the length of the nodes also in this case, we end up with a non-zero morphism 7" from
(Qj,W;) = (Ej-1,4,Vj-1,) to (Qi, W;) for some index j in {c+1,--- ,b}.

Now that morphism must be an isomorphism by lemma(1.0.4] but this is impossible because
we are assuming condition (ii). Hence we conclude that Hom ( (Ecp, Vep), (Eac, Va,c)> is zero

for every (ou,c, acp) € G(Z,a,c) x G(Z,c,b). O

Now let us fix any index i € {1,--- ,r}. Then we denote by R; = R(a.; ni,d;, k;) the Quot
scheme used in the construction of G(ae;n,d, k) and G(a;n, d, k); we denote by PGL(N;) the
group acting on such scheme (see remark [1.0.4)). For every i € {1,---,r} let us define a set
L;_1; consisting of a single abstract index [;_; ;. We denote by

G(2,1i1:) = Gi = RS (ae;ni, diy ki)
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the subschemes of R; consisting of ac-stable points. By remark there exists a family
(97, W?) of coherent systems over the stable locus with a local universal property; we denote
such a family also by (gli—l,i’)}li—l,i)' In addition, for every node (a,b) let us define the group
Gap = PGL(Ngy1) % -+ X PGL(Np). Then we have the following result.

Proposition 5.0.5. Let us fiz any type (n,d, k), any critical value o for it and any data 9
as before. Let us suppose that for each internal node (j,i) with desc(j,i) = | and for every
aji € G(2,j4,1) we have

Hom( (B Vi), (Bsp, Vi) ) = 0. (5.2)

Then for every internal node (a,b; —) there exist the following objects:

e a finite set L,y of indices together with a natural map Loy — Lo X Leyp, where ¢ =
desc(a, b); for each lop € Lqyp its image will be denoted by (loc,lep);

o for each lop € Loy, 2 schemes ]:"(@, lop) and Q(@, lap);
e for each l,p € Ly, a family (‘(jla,ba f}la,b) of coherent systems parametrized by Q(_@, lap),
such that the following properties hold.

(i) For each l,p € Ly, ]:-(-@Ja,b) is a locally closed subscheme of Q(.@, lac) % Q(@, lep); if
we denote by pi, ., q,, and 7, , the projections

gA(ga la,c) @ ﬁ(-@v la,b) qli’b) G(.@, lc,b)a
Ry F(Dlap) x C = F(D,lap), (5.3)

then there exists a locally free sheaf

~ ~ ~ ~ ~ \
%la,b = gajt}rla’b ((qAZa"lﬂ qua,b)*(glc,lﬂ Vlc,b)’ (ﬁ2a7b7ﬁla,b)*((€la,c7 Vla,c))

over ]:"(@, lap), and Q(_@, lap) is equal to P(ﬂla’b), In particular, this gives a projective
fibration ¢, , : G(@, lap) — ]:"(.@, lop) with fibers isomorphic to Pe~1; we denote by
Oy, ,(1) the tautological bundle of G(D,lap).

(ii) There ezists a family of non-splitting extensions parametrized by G(2, lap), of the form

O - (¢2a7b7 @layb)*(ﬁgmb7ﬁla,b)*(€la,c? Vla,c) ®(_j(~@7la,b) Ola,b(l) -
— (EA‘ltz,l77 f)la,b) - ((ﬁ;a,b’ Sbla,b)*((jza,b’ qua,b)*(élc,lﬂ fjlc,b) - O (54)
Such an extension is universal in the following sense: let us suppose that we have fized

any morphism of noetherian schemes u : T — f(.@,lmb), any line bundle L € Pic(T)
and any family of non-splitting extensions parametrized by T':
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O —> (u/’ u)*(ﬁga’b’ﬁla,b)*(éla,c7 ]A}la,c) ®T £ _>
= (&r,Vr) — (u/’ u)*(qiaﬁb’ (jla,b)*(glc,b7 ]}lc,b) — 0. (5.5)

Then there exists a unique morphism v : T — G(@, lap) over .7}(.@, lap), such that
1s the pullback of via (',v), modulo the action of H°(T, O%).
(iit) For each l,y there are free actions of Ggap on f(@, lap) and on Q(@, lop). For both
schemes there exist good quotients, denoted by:
przf’b  F(D,lap) = F(D,lay), pry L G(D,lap) = G(D,lap).

(i) The family of schemes {F(ZD,lap)}, eL,, gives a disjoint locally closed covering of the
set F(D,a,b) and analogously for G(Z,a,b).

(v) For each loy there is a projective fibration ®1,, making the following diagram commute:

~ S2lzl,b A

g(@a la,b) f(@’ la,b)
Pl ~ P,
g(@a la,b) o, F(@a la,b)-

(5.6)
The fibers of w1, , are again isomorphic to Pee—t,

(vi) For every lap, for every agp = {[0j:]} i) i G(Z,lap) and for every t € (prli,b)_l(aa,b)
we have that the sequence restricted to t gives a non-splitting evact sequence

0— (Ea,ca Va,c) — (Ea,b> Va,b) — (Ec,ba Vvqb) —0
that is a representative of oqp.

Proof. (modeled on the proof of [GM]|, proposition 6.5]) We proceed by induction on the height
of the node (a, b) starting from nodes of height 1 (note that if the height is zero, we will have
a local universal property as stated in [KN| §3.5]). If h(a,b) = 1, then b = a + 2 and the 2
descendents of (a,a + 2) are (a,a+ 1) and (a + 1,a + 2). So let us consider the 2 projections

ﬁa,a+2 : éa+1 X CATYaJrQ — Ga+1 = Q(.@, la,aJrl)a
qAa,a+2 : Ga-‘rl X Ga+2 — Ga+2 = g(@7 la+1,a+2)
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and the projection 74 q42 : GQH X Ga+2 xC — Ga+1 X Ga+2. Let us denote by T the scheme
éa—i—l X Ga+2 and by ¢ any point (¢1,t2) € T; then we can define:

F(P,0,0+2) = {t € T s.t. dim Ext! ((d) aras Gaar2) (Enurnsar Viassiara )
(ﬁ;,a+2’ﬁa7a+2)*((€la,a+l7Vla,a+1)t) = ea""l and

Hom(((jé,ﬁ_g, qAa,a+2>*(éla+1ﬁa+27 f}la+1,a+2)t7 (ﬁf},a+27ﬁa,a+2)*(£la,a+1 5 Vla’a+1)t) - 0} . (57)

Using 1} and the previous definition of the families (él
the last condition can be dropped. Therefore, if we consider the families parametrized by T

Vi, ,,) foreveryi=1,--- r,

i—1,i)

(q(/l,a-FQ’ Qa,a+2)* (gla+1,a+2 ) Vla+1,a+2 )’ (ﬁ;,a—&—% pa,aJrQ)* (gla,a+1 ) Vla,a+1 )7

then each set coincides with a scheme of the form T¢,  , as described in lemma m
Then we can apply proposition on T, , and we get that there is a finite set L, o420
wasz Of F(Z,a,a+ 2) by reduced locally closed
subschemes. In this case the sets Ly o411 and Lo 442 consist of a single element, so the set

and a disjoint covering {F(Z, la,a+2) } 1, oioel
map Lgat2 — Laat+1 X Lay1,a42 is easy to define.

Now for each index lqq12 we define the morphisms py, ., G, ... and 7, ., as in (5.3).
Again by proposition , we get that on each F(Z2,14,4+2) the sheaf

N

~ ~ ~ ~ Vv
1 N o o ~
Hla,a+2 = gl’t +2 ((qga’a_t,_Q’ qla,a+2 )* (gla+1,a+2 ’ Vla+1,a+2 )’ (p2a7a+2 ? pla,a+2 )* (gla,tH—l Y Vla,a+1 ))

Trla,a

A~

is locally free of rank e,y1, so it makes sense to define Q(_@, loatv2) == P(H, and to

a,a+2)
consider the induced projective fibration

¢la,a+2 : gA(-@> la,a+2) — ]:—(-@7 la,a+2)

with fibers isomorphic to P¢a+1=1. We denote by O, (1) the tautological bundle of G(2, lg.a+2)-
Again the same proposition proves that there is a family (éla,a 429 f}la,a .») of coherent systems

a,a+2

parametrized by G(2, la,a+2) and a family of non-splitting extensions of the form:

A A~

0 — (Cﬁ;a,a-kQ’ @la,a+2)*(f)2a’a+27ﬁla,a+2)*(5la,a+1?Vla,a+1)®g(@7la,a+2)
®G(@7la,a+2)ola,a+2(]‘) - (gla,a+2’vla,a+2) - (58)

- (952(1’@4_27 @la,a+2)*(‘j{a’a+27 qla,a+2)*(gla+1,a+2’Vla+1,a+2) — 0.

This family is universal in the sense of corollary [4.4.4]

Now let us consider the free action of Gy 442 = PGL(Ng41) X PGL(Ngy2) on Gai1 X Ga+2,
with quotient
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— g g e s
Plaa+2 = (prla,a,+1,prla+l,a+2) 0 Gag1 X Gayo —» G1 X Ga.

This action restricts to an action of the same group on the subscheme .7:"(@, loat2) and
we denote by F(Z,lqq42) the image of it under pry q42. Since ]:"(@, la,a+2) is locally closed
in G; x Gy and saturated with respect to that action, then F(Z,l,q42) is locally closed in
G1 x Ga. For every index [, 42 we denote by

prl];,a+2 : ‘7:—(9’ la7a+2) - F(@a la,a+2)

the restriction of pryq4+2. Now the action of Gy 42 extends to an action on the projective
bundle G(@, lgat2) over f"(.@, lgat+2). Such a group action is free and the quotients are
geometric, so there is a good quotient

pri L 1G(Plaar2) > G(2laara)

a,a+2
and an induced projective fibration ¢, .., : G(Z,la,a+2) — F(Z,la,a+2) making diagram (5.6
commute for (a,b) = (a,a + 2). Set theoretically pro.qi2(F(2,a,a + 2)) = F(2,a,a + 2).

Since

{ﬁ(97 la7a+2 ) }la,a+2 eLa,a+2

is a disjoint locally closed covering of F (Z,a,a+ 2), then we get that the family of schemes
{F(Z,l0,a42) Yoo 260004 ElVes a disjoint covering of the set F(Z,a,a + 2). Now let us fix
any la,ba any point ((Qa+17 WCL+1)7 (Qa+2a Wa+2)) in ]:(97 la7a+2) and let

(t1,t2) € (PTZJZHQ)*l((QaH, Wat1), (Qare2, Was2))-

By construction the fiber of ¢ over (t1,t9) is given by

a,a+2

]P)(Eth ((Qa+27 Wa+2)7 (Qa+17 Wa—l—l)))'

By the commutativity of , this coincides also with the fiber of ¢y, , ., over ((Qa+1, Wat1),
(Qa+2, Was2)). Therefore this gives a canonical identification of the set underlying the scheme
G(2,lq,a+2) with a subset of G(Z,a,a + 2). Moreover, this also proves property (vi) for the
node (a,a+2). In addition, since {F(Z,la,a+2) }14.012€La.0s» 15 @ locally closed disjoint cover-
ing of F(Z,a,a +2), then we get that the family of schemes {G(Z,la,a12)}14 01260012 8iVES
a disjoint covering of the set G(Z,a,a + 2).

Now for the inductive step, let us suppose that all the results from (i) to (vi) are verified
for every internal node with height less or equal than A — 1. Then let us fix any node (a,b)
with h(a,b) = h and let us write ¢ := desc(a, b); let us fix also any pair of indices I, € L.
and lc,b € Lc,b~

By inductive hypothesis, we have constructed 2 projective fibrations Q(@, la,c) over .7:"(9, lae)
and G(2,1.3) over F(2,l.;). Moreover, we have constructed families of coherent systems
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(5la F,Vla .) and (&, b,Vl ) parametrized by G(2,la.) and G(2,1.p) respectively. Now let us
fix any point

t= (ta [3) Cb) G(-@; la,c) X G(.@, lc7b) =T

and let us denote by (o, acp) := (prla c,prlgcb)(ta7c,tc,b). For simplicity, let us suppose that
Qe = {[0:i]} (ji)edesc(a,c) With every o, represented by a sequence of the form:

0 — (Ej, Vig) = (Bja, Vii) — (B, Vig) — 0

and analogously for a.p. Then let us consider the 2 projections:

lac pb lac pb

g(@ lac) G(@ lac) X g(@ lcb) G(@ lcb)

Now by property (vi) of the inductive step, for each t = (t4¢,t.p) € T as before, we have:

(ﬁ;a,mlc,b7ﬁlﬂqmlc,b)*(éla,c7 f}la,c) (gla c? Vla c) a =~ (Ea Cy Va C)
(qAZcL,mlc,b’ (jla,alc,b)*(é;lc,b’ ],)lc,b)t = (glc,b’ Vlc,b)tc,b = (Ecvb7 ‘/676)

Now we define

F(P e lay) = {(tmc, tep) € T st dim Ext (@], 1, toten) (1o Vi)t

(ﬁga,alc,b’ﬁla,mlc,b)*(éla,c7 f}la,c)t) = 60}. (59)

By proposition [I.0.5] this set is locally closed in T'. Then we can apply proposition [4.6.3]on
such a scheme, so there exists a finite set L = L(lq, ) and a disjoint covering {.7:"(.@, D}her
of . Each object of that covering is locally closed in T" and in . We perform this
construction for every pair of indices (lg¢,lcp) € La,c X Lep. Then we define

La,b = |_| L(la,m lc,b)
(la,mlc,b)

and we denote by [, any object of that set. By construction, we have an obvious morphism
from this set to Lg . X L.} sending every lgp to the pair (g ¢, lcp). Then we define set maps
Dloys Qg Ty, a8 0 |D Again using proposition we get that on each ]:'(9, lap) the
sheaf H;, , defined as

~ ~ \
gmt}rla b ((q/\;a’lﬂ qla,b) (glc b7 ) (pl b7pla b) (Ela,c7 Vla,c))

is a locally free sheaf of rank e, so it makes sense to define G(2,1,3) := IP)(’}:lla’b) and to
consider the induced projective fibration:

Sbla,b : gA(@7 l(l,b) — ﬁ(@7 l(l,b)
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with fibers isomorphic to P¢~!. We denote by O, (1) the tautological bundle of G(D,lap).
Again the same proposition proves that there is a family (é:layb,f)la’b) of coherent systems
parametrized by G (2,14p), together with a family of non-splitting extensions:

0 - (@;a,b7 géla,b)*(ﬁ;a’lﬂﬁla,b)*(gla,c’ Vla,,c) ®G(@ala,b) Ola,b(]‘) -
- (5la7bvvla,b) — (Cﬁ;a,b’ @la’b)*((jgayba (jla7b)*(5le,ba Vlcyb) —0

that is universal in the sense of corollary Now let us consider the action of Ggp =
Gae X Gep on G(P,1lqc) x G(D,1.p), with quotient

(p?“lgayc X prlg;b) 2G(Dylae) X G(D,1ep) = G(Dolae) X G(D,1ep).

For each [,p, this action restricts to an action of the same group on the subscheme
F(2,14p) and we denote by F(2Z,1,) its image via (pry x prlgc ,)- Since F(2,14y) is locally

lu7c
closed in G(2,la.) X G(2, lcp) and saturated with respect to the action of Gy, then F(Z2,1,y)
is locally closed in G(Z,lq,c) X G(Z,1.p). For every index I, we denote by

P, F(2,1ap) = F(Z,lay)

the restriction of (prlga X prf b). Now the action of G j extends to an action on the projective

bundle G(2,14,) over F(2,lap). Such an action is free and there is a geometric quotient:

p’rlga’b : gA(@’ la,b) - g(@, la,b)

and an induced projective fibration ¢, , : G(Z,lap) = F(Z,lap) making diagram (5.6) com-
mute. Set theoretically (prlga X prlgib)]:"(@, a,b) = F(2,a,b). Since

{ﬁ(@, la,b)}la,bELa,b

is a disjoint locally closed covering of F(2,a,b), then we get that the family of schemes
{F(Z,lap) H1apeL,, gives a disjoint covering of the set F(Z,a,b). Now let us fix any l4p, any
point (aq.c, ep) in F(Z,1,p) and let

(tCL,Cv tC,b) € (prl];b)il (aa707 Oéc,b)-

Then by construction we get that the fiber of @, . over (t4.,.p) is given by

P(Extl ((Egb, ‘/c,b)7 (Ea,cy Va,c)))‘

By commutativity of , this coincides also with the fiber of ¢, , over (ge, ocp). There-
fore this gives a canonical identification of the set underlying the scheme G(Z,1,;) with a
subset of G(Z,a,b). Moreover, this proves also property (vi) for the node (a,b). In addi-
tion, since {F(Z,lap)}i, €L, 18 @ disjoint covering of F(Z,a,b), then we get that the family
{9(2,1ap) b, veLa,, gives a disjoint covering of the set G(Z,a,b).

[
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We recall that in [BGMMN| proposition A.8], it is proved that if GCD(n;,d;, ki) = 1,
then there exists a universal family of coherent systems over G(i) = G(ac;ni,d;, ki). Hence
by repeating all the previous proof on the level of the moduli spaces G(i) instead of G’(z), we
get:

Corollary 5.0.6. If GCD(n;,d;, k;) =1 for alli =1,--- ,r, then all the previous results hold
not only at the Quot scheme level, but also at the moduli space level. In particular, the families
(éla’b,f/la’b) can be defined also at the moduli space level.

The following corollary is simply a consequence of proposition applied at the level of
the node (a,b) with the same 2 families that we used at that step of the previous proof.

Corollary 5.0.7. Let us suppose that for a certain node (a,b) the condition

Hom((Ec,ba ch,b)a (Ea,ca Va,c)) =0

is not satisfied. Then the results of the previous proposition for the node (a,b) still hold if we
restrict to the subscheme

F(ZD,a,b);= {(ava,e,0cp) € F(Z,a,b) s.t. Hom((Ecp, Vep), (Eacs Va,e)) = 0}.
Such a subscheme is locally closed in F(Z,a,b).

Now let us suppose that for a certain node (a, b) with desc(a, b) = ¢ the following conditions
hold:

o Hom((E,p, Vep); (Bacs Vae)) = 0 on all the set G(2,a,c) x G(2, ¢, b);

e the dimension of Ext'((E.p, Vep), (Ea.c, Vae)) is constant on all G(2,a,¢) x G(2, ¢, b);

the set L, . consists of a single index [, . and Q(@, a,c) = Q(@, la,c) is integral;

e the same condition for the node (¢, b; —).

Then by lemma we can choose the set L, so that it consists of a single index I,
and we get a projective bundle G(_@, a,b) = G(@, lap) over
F(2,a,b) = G(2,a,¢) x G(2,¢,b).

Since the fiber is a projective space and the base is irreducible, we get that Q(@,a, b) is
again irreducible. Therefore, by induction we get the following result.

Corollary 5.0.8. Let us suppose that the following 2 conditions hold:

e for all internal nodes (a,b) with desc(a,b) = c and for all (o e, acp) € G(Z,a,c) X
G(2,c,b) we have that

Hom((Ec,bu ‘/c,b)v (Ea,Ca Va,c)) =0
and E:ntl((Ecyb,Vc,b),(anc,Va,c)) has constant dimension e. on G(Z2,a,c) x G(2,¢,b)

(this means that there exists only one “interesting” set of data 9 );
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e for all leaves (i — 1,4) of the tree the schemes G(aec;n;, d;, ki) are irreducible.

Then for all internal nodes (a,b) the set G(Z,a,b) has a natural scheme structure of
projective bundle (with fibers isomorphic to P*~1) over G(Z2,a,c) x G(Z,¢,b).






Chapter 6

Objects with unique Jordan-Holder
filtration of length 3 and 4

In this chapter we describe how we can parametrize all the (E,V')’s that have a unique -
Jordan-Hdélder filtration of length r equal to 3 or 4. We will not give a complete description
of all possible cases, but we will focus only on those cases that will be needed in order to
compute the Hodge-Deligne polynomials of G(«a;n,d, k) for n = 3,4, k = 1 and any d. We
get complete results when » = 3; when r = 4 we get complete results only in the case when
the second and third object of the graded are

6.1 Unique Jordan-Holder filtration of length 3

Let us fix any triple (n,d, k), a critical value a. for that triple and let (E,V’) be any
ac-semistable coherent system of type (n,d, k). Let us suppose that at «. the graded of a
coherent system (E, V) is @?_,(Q;, W;) and that (E, V) has a unique a.-Jordan-Hélder filtra-
tion (therefore, that filtration coincides with the a,-canonical filtration by lemma . We
want to parametrize all the (E,V)’s of that type, having fixed the graded (and also its order,
since the filtration is unique).

If the a.-JHF is unique, then the only subobjects of (E, V') with a.-slope equal to pio, (E, V)
will be (Q1, W7) and an extension (Es, V) of (Q2, Wa) by (Q1, W1); the quotient (E, V') /(E2, V3)
will be isomorphic to (Qs, W3). Therefore, given any (E,V) with unique a.-Jordan-Holder
filtration, we have that (E, V) belongs to G (ae;n, d, k) if and only if the following numerical
conditions are satisfied:

k ko ki+k k

el 1R < —. (6.1)
ny n ny + ng n

Analogously, given any (E, V') with unique a,-Jordan-Hoélder filtration, we have that (E, V)

belongs to G~ (a;n, d, k) if and only if the following numerical conditions are satisfied:

> —. (6.2)
ny + no n

k1 ﬁ k1 + ko k
n

65
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6. Objects with unique Jordan-Hélder filtration of length 3 and 4

In both cases, we need a way of parametrizing all the (E,V)’s with unique filtration,
having fixed the graded. According to different relations between the various objects of the
graded, we will need one of the 4 descriptions given below. Roughly speaking, the first 2
descriptions amount to considering (E, V) as obtained via a tree of type A, while the last 2
ones are obtained by considering a tree of type B as follows:

A (0,3) (0,3)

AN SN

(0,2) (2,3) (0,1) (1,3

2 /

(1,2) (1,2

)
N\
(0,1 (2,3).

Lemma 6.1.1. Let us fix any triple (Qi, Wi)i=1,2,3 € H?:1 G; with numerical conditions ,

respectively (6.3), and let us suppose that (Q1, Wh) % (Qa2, Wa) # (Qs, W3). Then the (E,V)’s
that belong to G*(ae;n, d, k), respectively to G~ (ae;n, d, k), that have unique Jordan-Hélder

filtration at o and graded ®;_,(Q;, W;) are parametrized by pairs ([u], [V]) where:

e (1] € P(Ext ((Qa, W), (Q1,W1))) and p has a representative of the form

0= (Q1, W1) = (E2,V2) = (Q2, W2) = 0;
o [v] € M([u]) = P(Eat' ((Qs, Ws), (B2, V2))) ~ P(But' ((Qs, W3), (Q1, Wh))).
Proof. Given the graded, a filtration of (E,V) is

0cC (El,V1> = (QLWI) C (EQ,VQ) (- (E, V)

where we have exact sequences:

0= (Q1,W1) % (B, Va) 5 (Q2, Wa) — 0, (6.3)
0= (B2, Va) = (B, V) -2 (Q3,W3) — 0. (6.4)

Now by proposition 2.2.1] (E,V) has a unique a.-Jordan-Holder filtration if and only if
all the sequences

0= (Qr, Wk) = (Ek1, Vir1)/(Bk—1, Vi—1) = (Qkt1, Wiy1) = 0
for k = 1,2 are non-split. This amounts to imposing that both (6.3]) and

0— (Q27W2) — (E7 V)/(Ql,Wl) — (QS;WS) —0 (65)
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are non-split. Since (Q1,W1) # (Q2, W2) and since both objects are a.-stable, then for all
extensions (6.3) that are non-split, Aut(FEs, Vo) = C*. Moreover, the objects of the form
(B2, Vo) in (6.4) are parametrized by P(Ext'((Qa, W2), (Q1, W1))).

If we apply the functor Hom((Qs, W3), —) to (6.3]), we get a long exact sequence:

-+ — Hom ((Q3, W3), (Qa, Wa)) — Ext! ((Q3, W3), (Q1, W1)) %
7> Ext! ((Q3, W3), (B2, Va)) —— Ext! ((Q3, Ws), (Q2, Wa)) — -+ (6.6)

If we denote by v the class of (6.4) and by v/ the class of (6.5)), then we get that v/ = &(v).
Then v/ # 0 if and only if v is not in the image of @. By hypothesis, we have that 7 is injective,
so it makes sense to consider

M([1]) = Ext! (Q3, W3), (B2, V2)) \ Ext! ((Qs, W), (Q1, W) .

Now given any sequence of the form (6.4, we have that Aut(FEs, V2) = Aut(Qs, W3) = C*,
so the (E,V)’s we are interested in are parametrized by equivalence classes of points in M ([u]),
modulo the action of C*. O

Proposition 6.1.2. Let us fir any triple (n,d, k), a critical value . for it and any triple
(ng, di, k;)i=1,2,3 compatible with (oe;n,d, k), i.e. such that

3 3 3
Zni:n7 Zdzzdv Zl%:k, Nocc(n’iadiaki) :/’Lac(n7d7k) Vi= 17273' (67)
i=1 i=1 i=1

Let us assume that conditions , respectively , are satisfied. Moreover, let us
suppose that for every triple of points (Qi, Wi)i=123 € H?:l G; we have:

Hom((Q3, W3), (Q2, W2)) = 0 = Hom((Q2, W2), (Q1, W1))
(in particular, this holds if (n1,k1) # (no, ko) # (n3,k3)). Let us denote by G’ the set of
all the (E,V)’s in GT(ae;n,d, k), respectively in G~ (ae;n,d, k), with unique a.-JHF and
graded in H?:l G;. Then there exists a finite family {Rqp i} of schemes for (a,b,c) €
N2 x No, ¢ < b and i, j varying in finite sets (for a, b, c fived), together with injective morphisms
to G (ae;n, d, k), respectively to G~ (ae;n, d, k), such that the images form a disjoint covering
of G' by locally closed subschemes. Every Rgp c.ij comes with a sequence of 2 morphisms:

Pa,b,c;i,j * Ra,b,c;i,j — Ua,b,c;i,j C Ra;z’ x G,
Pasi - Ra;i — Ua;i C G1 X Ga,

where:

® Vapciy has fibers isomorphic to Pr-L Pl and ©a:i has fibers isomorphic to P*~1;
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o {Uy.iti is a finite disjoint locally closed covering of

Ua = {((Ql,Wl), (QQ,WQ)) S G1 X G2 s.t. dim E:L‘tl((QQ,WQ), (Ql,Wl)) = CL};

U, is a locally closed subscheme of G1 x G2 and so are all the Uy ’s.

e {Uspeijtj is a finite disjoint locally closed covering of

Uapei = {((E2,V2),(Q3,W3)) € Ry;i X G3 s.t.
dim Extl((inv W3)7 (E27 ‘/2)) = b> dim EiEtl((Qg, W3)7 (Z(z;i(E% ‘/2)) = C}

where pq; 15 the composition of v with the projection to Gv. Ugp e 15 locally closed
in Rq;i X G and so are all the Uy p i j-

If (n1, k1) = (n2, ka), then all the previous results still hold on (G1 X Ga~A12) X G3 instead
Of G1 X GQ X G3.

Proof. If (n1,k1) = (ne, ko), then the last condition of (6.7) implies that di = da, therefore
G1 = Gs. For simplicity, we do all the proof of the proposmon in the case when this does not
happen. If (n1, k1) = (ng, k2), then the proof is exactly the same by restricting to G; x Ga~\ A2

whenever it is necessary.

Let us fix any triple (a,b,c) € N2 x Ng. Then proposition for r = 3 applied to a
tree of type A and to data 2 = {a,b} gives projective bundles {@q;; : IA%W; — Ua;i}i and
{Papiy+ Rapiij = Uapijtig, where

° {Uaz}m is a d1SJ01nt locally closed covering of Gy x G’Q, we denote by p12 and §i2 the
projections from U, 4 to G1 and Go respectively;

) {Ua biijtb; @ disjoint locally closed covering of RM X Gg, we denote by pi123 and ¢i2,3
the projections from Ua bii tO Ra .+ and Gs respectively;

e the fibers of ¢, are isomorphic to Pt

e the fibers of @, 4. ; are isomorphic to Pb-1,

Moreover, we have universal families of extensions over R,; and R, y,; ; respectively:

0 (P, Put) (Phos H12)"(Q1. W) @ Oi(1) —

(é V ) (@(z 1790(1 2) (q/12a(j12)*(QA2aW2) — 07 (68)

0 = (Pl pii o Pabiing) (Bras D12,3)* (Eais Vaii) @, - Oabiig(1) =
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= (Easigr Vapsig) = (Phsi> Pasi)* (@12,3, G12,3)" (D3, Wa) — 0. (6.9)

Now for every 0 < ¢ < b we define:

U besinj = {t € Unpyij st dim Ext'((¢lo.3, G12,3)* (3, Wa)r,
(Pro,3P12,3)" (Bhii» Pait) " (P2, Pr2)* (1, Wa)i) = ¢}

By proposition Ua,b@m is locally closed in Ua,b;m and therefore also in Ra;i X ég. Let
us apply the functor

Homﬁ’a,b;i,j ((4,12,37 412,3)*(QA37 W?))? -)
to the pullback of via P12,3. Then we get a morphism of the form

Homs, .. ((dho.3: G12.3)"(Q1, W), (Bla g, P12,3)" (Phsis Pai) ™ (D1, P1) " (Qu1)) —

— Homﬁ'a,b;i,j((q/lz& (21273>*(Q17W3)7 (ﬁ/12737]312,3)*(5a;i7 Va;i))~
By base change and the previous lemma, this morphism is injective, therefore we can
rewrite it as
Fapeig = Eapeig

Therefore, we can consider the subbundle

Qa,b,c;i,j = ]P)((Fa,b,c;i,j>v) C P((Ea,b,c;i,j)v) = Ra,b;i,j‘(]a’b’c;i’j-

Then we define Ry p i := Rapiijlp

a,b,c;i,j

to Umb’c;i,j (given by the restriction of (g . ;) with fibers isomorphic to Pb—1 Pl

~ Qa bei,j- Lhis comes with a morphism Qg 4, . ;

By pullback of . from R, ;i and by restriction of . from Ra bii,; we get 2 families of
extensions of coherent systems parametrized by Ra beidj- I we fix any point r € Ra b and
we write (E,V) := (Sa bii s Vabm)r, then the 2 extensions over R, b give rise to 2 exact
sequences of the form

0— (Ql)Wl) — (E27‘/2) — (QQvWQ) — 07
0— (E27‘/2) - (E7 V) - (Q37W3) — 0.

Now let us suppose that the numerical conditions (6.1)) are satisfied; then the previous
lemma proves that for every point r € Ra,b,c;i,j the coherent system

(B, V) := (Eapiirjs Vasinj)r

has a unique filtration and it belongs to G (ae;n,d, k). Therefore, by using the universal
property of the moduli space G(af;n, d, k), we get for every (a, b, c;, j) an induced morphism
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ﬁa,b,c;i,j : Ra,b,c;i,j — G(O‘j—; n, da k)
with values in G (ae;n,d, k). Such a morphism is invariant under the free action of Gi3 =
PGL(N1) x PGL(N2) x PGL(N3), so we get an induced morphism

Na,b,c;i,g * Ra,b,c;i,j — G(Oéi; n, d7 k)

The previous lemma proves that every such morphism is injective and that the images of
all the 7)4p.c..;’s form a locally closed disjoint covering of G’ C G (ac;n,d, k). An analogous
conclusion holds if we assume conditions (6.2)). O

Lemma 6.1.3. Let us fix any triple (Q;, Wi)i=123 € H?Zl G; and let us suppose that (Q1, W7) ~
(Q2, Wa) # (Qs3,W3) and that
Exf® ((Q3,W3), (Q1,W1)) =0

(with a little abuse of notation we will simply write (Q1, W1) also for (Q2, W2)). Let us denote
by 1 any class of a non-split extension of the form

0— (Ql,Wl) L) (EQ,VQ) i) (Ql,Wl) —0 (6.10)

and by v any class of a non-split extension of the form

0= (B2, Va) - (B, V) -2 (Q3, W3) — 0. (6.11)

Having fived ] € P(Ext' ((Q1, W1), (Q1, W1)), let us consider the space Ext' ((Q3, W3), (B,
V5)) and let us consider the action of C x C* on it given as follows. For every pair of
scalars (£,7) and for every class of extension v with representative of the form (6.11), we
set (§,7)-v =1, where V' is represented by

0= (Ba, Vo) 5 (B, V) =25 (Q3, W3) — 0,

where €' :=c o (§- 0ok +7-idg,y,)). Let us write

M([1]) := Bzt ((Qs, W3), (B2, V2)) \ Bzt ((Qs, W3), (Q1, Wh));

then the previous action sends M ([u]) to itself, so it makes sense to consider M([u]) :=
M([p])/(C x C*). Then the (E,V)’s with unique Jordan-Hélder filtration at o, and graded
®3_1(Q:, W;) are parametrized by pairs ([u], [V]) where:

o [u] € P(Ext' ((Q1,W1), (Q1,W1))) and p has a representative of the form ;

e [V] is any object of M([u]).

Moreover, M([u]) ~ C*=! x P*=1 where b = dim Ext'((Q3, W3), (Q1, W1)).
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Proof. As in the proof of lemma we can consider exact sequences , and
(6.5), with (Q2,W2) replaced by (Q1,Wi). Then (E,V) has a unique Jordan-Holder fil-
tration at «. if and only if both and are non-split. This implies that [u] varies
in P(Ext'((Q1,W1),(Q1,W1))). As in the already cited lemma, let us consider the exact se-
quence (6.6). Since Hom((Qs, W3), (Q2, W2)) = 0 = Ext?((Q3, W3), (Q1, W1)), we get a short
exact sequence

0 — Ext! ((Qs, Ws), (Q1, W1)) —> Ext! (Qs, Ws), (Es, Va)) —
=5 Bxt! ((Qs, W), (Q1, 1)) — 0. (6.12)

We need to consider all the elements v € Ext!((Qs, W3), (E2, V2)) such that (v) # 0, i.e.
such that they are not in the image of . So we need to consider the space

M([u]) := Ext! ((Q3, W3), (B2, V2)) ~ Ext! ((Qs, W3), (Q1, W1)).

From the previous exact sequence, we get a (non-canonical) isomorphism

M ([u]) ~ Ext! ((Qs, W3), (Q1, W1)) x (Ext' ((Q3, W3), (@1, W1)) ~ {0}) . (6.13)

By we have that Aut(Es, Vo) = C x C*; to be more precise, given any pair of scalars
(¢, 7) the corresponding automorphism of (Eg, V2) is given by §-0 ok +7-id(g, ;). Therefore,
there is an induced action of C x C* on the space Ext!((Qs, W3), (E2, V2)) given as follows:
for every extension (6.11]), the image of such an extension via a pair (&, 7) is given by

0= (Bo,Va) = (B, V) -2 (Q3, W) — 0

where ¢’ :=¢c o ({0 0K+ 7-id(g, 1,)). Now let us suppose that an extension v represented
by (6.11) is in the image of &. This is equivalent to say that we have a commutative diagram

)

0 (Q1, W) ——— (B, V") (Qs, W) 0
o m o m
0 (B, Vo) ———— (B, V) —— (Qs, W3) 0.

Then

gooc=co({-cok+T idg, )00 =

=¢.-c000KoO+T-€00=T-€£00.

Therefore, we can induce a commutative diagram
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8

TE

0 (Q1, W) (E', V') (Qs, W) 0
o m o N
0 (Ba, Vo) — = (B,V) —— (Q3, W) 0

where we set £’ := 7 -&. Therefore, C x C* acts on Ext'((Q3, W3), (E2,V2)) by fixing the
image of @, so we can consider the restricted action of that group on the set M([u]) =
Eth((Q37 W3)’ (E27 ‘/2)) ~ Im(a)

Now Aut(Qs3, W3) = C* since (Qs, W3) is ac-stable; moreover (Es, V) and (Q3, W3) are
not isomorphic (the first one is strictly a.-semistable and the second one is a.-stable), so
the action of Aut(Esq, Va) x Aut(Qs, Ws3) on M([u]) is simply given by the previous action.
Then the (E,V)’s we are interested in are parametrized by equivalence classes of objects of
M([p]) = M([u])/(C x C*). Under the isomorphism , the previous action on M ([u]) is
given by

(577') : (V1,V2) = (T‘V1+§-V2,T-1/2).

So it is easy to see that the quotient M ([u]) is isomorphic to C*~! x P*~! and we conclude.
O

Proposition 6.1.4. Let us fix any triple (n,d, k), a critical value . for it and any triple
(ni, di, k;)i=1,2,3 compatible with (ac;n,d, k). Let us assume that conditions , respec-
tively (6.9), are satisfied. Moreover, let us suppose that (ni, k1) = (n2, k2) (so automatically
(ni, k;) # (ns, k) fori =1,2) and that for every pair of points ((Q1, Wh), (Qs, W3)) € G1 X G3

we have:

Ext*((Qs, Ws), (Q1,W1)) = 0.

Let us denote by G’ the set of all the (E,V)’s in Gt (ag;n, d, k), respectively in G~ (ag;n, d, k),
that have unique Jordan-Holder filtration at . and graded (Q1,W1) @ (Q1, W1) & (Q3, W3).
Then there exists a finite family {Rqp.i;} of schemes for (a,b) € N? and i,j varying in fi-
nite sets (for a,b fived), together with injective morphisms to G*(ae;n,d, k), respectively to
G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Every Ry, j comes with a sequence of 2 morphisms

Cabij * Rapij — Uapij C Rasi X G,
Pasi * Ra:i — Ugs C G = G,

where:
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® Vupbij has fibers isomorphic to Ct~1 x P! and ©aii has fibers isomorphic to P4~L;

o {Ugyi}i is a finite disjoint locally closed covering of

Ua = {(Ql, Wl) € Gl s.t. dim E’Z‘tl((Ql, Wl), (Ql, Wl)) = a};
every U, s a locally closed subscheme of G and so are all the Uy ’s;

e {Uqypij}j is a finite disjoint locally closed covering of

Uapi = {((F2,V2), (Q3,W3)) € Rayi x G3 s.t. dim Ext*((Qs, W3), 0a:i(Fa, Va)) = b}.

Ua,psi 18 locally closed in R,; x G3 and so are the Ug . ;'s.

Proof Let us fix any pair (a,b) € N? and let us denote by (Ql, Wl) the universal famlly over
G1 Gg Since the objects of this scheme are a.-stable, we get that for each point t € G1 we
have

dim Hom((Q1, Wiy, (Q1,W1)) =
Let us apply lemma on T = Gy with the two families of coherent systems both
coinciding with (@1, ;). Then we get that the set

U, :={t € Gy s.t. dim Ext'((Q1, W1)r, (Q1, W1)y) = a}

is a locally closed subscheme of G1 and there exists a finite disjoint covering of U, by locally
closed subschemes Ua;i. Moreover, by proposition we get that on each Uaﬂ- there is a
locally free sheaf

7:[(1;,‘ = S:L't}rﬁ ((Ql,l/%)

a;t

Oai? (Q17W1)!UW)V

and a projective bundle @g; : Ra;i = IP’(’Ha;i) — Ua;i c Gy, together with a family of non-split
extensions {e,} _p ~parametrized by Rgi of (2 Ga:i)* (91, W1) by (oo Ga:i)* (1, W1)®1:zm,
ORM(l)' Such a fzimily of extensions is universal on the category of reduced Ua;i—schemeé.
Novx; by definition of family of extensions, for each ¢ there is an open covering {Rs;i}ke i of

R,.; for each k there is an extension

k

0— ((%;m@a;z‘)*(QhVA\/l)@Ra;iORN(l))\RQ (55271)5 ) =% (Pl Past) (Qu W) e — 0

(6.14)
over lei such that e, is the restriction of 1} for each r € R’;Z Since R, is noetherian,

then we can assume that K is finite and we denote its elements by {k; < --- < k,}. Then for
cach set ko = {k} < --- < K.} C K we define the locally closed subscheme of Rg.;:
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Ake . (R ARy (R b

Ra;i = (Ra;li n---nN Ra;i) ~ (Ra;zfl U---u Ra;i)7
where {k] | < --- < k..} is the complement of k, in K. Since K is finite, we get that these
schemes form a finite locally closed disjoint covering of Ra;i. For each ko we consider the

/

embedding of Rfj' in ﬁRZl- and we pullback (6.14) using that morphism. So for each ko we

3 3

get an extension

ke )
A ~ Ua;i ke Yike Ha;i ~ ~ * 7/ A N
0 = ((Pasir Pai) " (QuN) @ Op (1))]gre — (Ens Vi) =3 (Blsis Pasi) (QuWh)[gre =0

(6.15)
over }?lg‘l Now for each pair of indices (i, ko) we consider the scheme T" := Rl& X ég, together

with the projections p; and po to the 2 factors. Then we define U f'b_l. as the subscheme of T”
defined by

{t' € T' s.t. dim Ext"((ph, p2)* (D3, Wa)r, (91, 51)* (Exs, Vi) = b}
By proposition we get that Uhe

o3 1s locally closed in R’;'Z x Gs. By construction,

we have that each R’;'Z is locally closed in Rg;;, so each Uj“bz is locally closed in Ra;i X Gg.
Then let us consider the scheme Ua,b;z‘ defined as the subscheme of }?a;i x (i3 covered by all
the schemes of the form Uf'bl This is a disjoint covering of such a scheme by locally closed
subschemes of Ra;i x (33. Therefore, this gives a disjoint locally closed covering of ljmb;i.

By construction, for each ko and for each ¢’ € (A]f"b;i, we have that both (]5’1,]31)*(55;;, fif'z)t/
and (ph, po)*(Qs, Ws)y are a.-semistable. Moreover, since (n1,k;) # (ns, k3) by hypothesis,
then we have that:

Hom((p, p2)*(Qs, Wa)w, (91, 1) (Eks, Vis)y) = 0

for all t’ € Uf'bl Then we can apply proposition for such a scheme and we get that there

is a finite disjoint locally closed covering {ﬁf%’:'}ko of Ujj‘bz For each kg there is a locally free
sheaf on each Uf%’,lf':

ko ke ANk A A A A w0 Bke Yoke
Hatpr = Extlyg o (B, D2)" (s, Wa), (91, 51)* (€], Vie)) .

a,b;i

We denote by

Akoske . Akoke ko ke > A
ga?l;;i : Qa?b;i — Ua,%;i - Ra;i X G3
the vector bundle associated to that locally free sheaf. Using the same proposition, we have

that there exists a universal extension parametrized by sob’,]z', as follows:

ko ke kq,ke
Skoke AkoKens/ ar A \xs ke Yokey Sabit [ akoke Yykioskey Oabii
0— (ga,g;i 79@?[2;1' )*(pll’pl)*(ga;i7va;i) - (ga,(;);i ’Va,(;);i ) —
kg,ke
a5 A ko,ke pko,ke A A A A
—b> (9%12;1‘ 79(1?[);1‘ )*(p/27]72)*(Q37W3) - O (616)
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Now the set {Uf%]f' }ho ke 1s a finite disjoint locally closed covering of Ua’b;i, SO we rename it

as {Ua,b;i,j}j~ According to this notation, we denote by Qa,b;m, (éa,b;i,p]}a,b;i,j), etc. all the
various objects we have defined so far.

Now let us fix any j = (ko, ke) = (ko, k], - -+ ,k.) and let us consider the morphisms:

2 T _ 77ko ke ke a ﬁl) ke Ak/l
fyavb;i’j : U(l,b;i,j - Ua,b;i - RCL,I x G3 R(Z,Z - R(L,'L

and

N A fabiij Fabiii k)
Xa7b;i7j . Qa’b;imj Ua7b;i7j R(L,'L

Let us consider the pullback of (6.15) (with k replaced by k) via Xq,:;:

o* k’l
. . NI A 3A Xa,bsi,jCasi
0 = (Xt s, j» Xabsing)* ((Pis Pait) (Qr, W) @5 Op (1)) =5
bsii T asi skL ok biinglasi ) . A 3 A
T Xz,b;i,j( a;lz'?Va;li) T (X;,b;i,jvXa7b;i,j)*(90:1;i»@a;i)*(glvwl) — 0. (6.17)

Eventually by restricting again the set Ua,b;i,ja we can suppose that the pullback of the
line bundle OR“(l) is free on ﬁa,bm, so we can assume also that

(1)

is free on me;z}j' Therefore, we can identify the first an the last term of the previous exact

(Xapiij> Xabsig) Op

a;t

sequence.

Then for every pair of scalars (£,7) € C x C*, let us consider the new extension

A ~ N A A~ €a,biii(ET) 4 A Oa,byi,j
0— (%,b;i,j’ea,b;i,j)*(l)llapl)*(ga;ivVa;i) T (gavbmjvva,b;id) e

S abei g Oabiig)" (P2, P2)" (L3, W3) — 0 (6.18)
where we write:

k] k] .
anb;i’j (5’ T) =Ee (g ’ Xz’bﬂvj(o—a;li °© Hfl?li) +7 ld(éa;ivva;i)> ’

Now 1) is again an extension parametrized by Qajbm- of the same 2 objects of 1}
Therefore, by the universal property of (6.16)) (see corollary , we get that there is a

unique morphism

Oapiij(6:m) = 0(6,7)  Qupsij — Qapig
over (A]mb;i,j, such that 1} is the pullback of 1' via 6(§, 7). In particular, we have a

commutative diagram
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aEr) .
Qa,bsij-

Qa,bsi,j

Ba,bsi,5 ba,b3i,5

A

Uai (6.19)

Now we want to prove that such a morphism is an automorphism of Qg j, S0 we need

7-]7
to find an inverse for such a morphism; we claim that for every (£, 7) € C x C* the inverse of
0(€,7) is given by o(—&772,771). First of all, a direct check proves that if we apply the pair
(—¢772,771) to the sequence (6.18), then we get the extension (6.16)). Therefore, we get that

the morphism

f = @(_57_2a T_l) © é(gﬂ_) : Qa,b;i,j — Qa,b;i,j
is such that the pullback via f of (6.16) is again the same extension. Obviously, also the

identity of Qa,b;%ﬁj has the same property; since 1D is universal, then we get that f coincides
with the identity. The same argument proves also that

é(£7 T) © é(_gT_Qv 7—_1) : Qa,b;i,j — Qa,b;i,j
is the identity of Qa,b;i,j. Now let us consider the group action on C x C* given by (¢, 7') -

(&,7) = (&7 + 7, 77"). The previous observation then proves that we have a natural action
of C x C* on Qa,b;i,j given by

C x C* — Aut(Qapij)
(57 7_) = @a,b;@j (gv 7_)'

Then we define a subvector bundle Q; bii.j of Qa,bﬂ-’ ; as follows. Let us consider the pullback

of the sequence (6.14)) via the morphism 44 4. ; Umbﬂ-,j — RI;IZ and let us apply to it the functor

Homﬁa’b;i,j((ﬁé,ﬁg)*(ég, Ws), —). Then we get a long exact sequence:

i Hamfra’b;i’j((ﬁéaﬁz)*(@i% WS)) (ﬁllaﬁl)*(@:l;iv @a;i)(gla Wl)) —

— Eaty (05, P2)"(Qs, Wa), (91, 91)" (Bir Pai) (Q1, W) @, (01, 51)" O (1)) =
¢ A sl A ~ o Ak Ak
= Eaty (B D2)"(Qa, Wa), (81, D1)" (Eas Vaii)) = - (6.20)

Now the first sheaf of this sequence is actually zero using base change and the hypothesis
that (n1, k1) # (ns, k3). Then we get that ( is injective. Moreover, for every point ¢ of Ua,b;i,j7
we have:

(p1.01)" 04 (1)) =0

J a;i

Exth, . (9 p2)"(Q3, Wae, (B 51) " (Phsir $aii) (Q1 W) ©,
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for [ = 0 and | = 2; the case [ = 0 is a consequence of the hypothesis that (ni, k1) # (ns, ks3),
while the case [ = 2 is a consequence of the hypothesis that

Ext'((Qs, W3), (Q1,W1)) =0V ((Q1,W1),(Q3,W3)) € G1 x Gs.

Then by base change we get that the second sheaf of (6.20)) is locally free. We denote
by Qfl bii.j the vector bundle on Ua,b;m associated to its dual. Since ( is injective, using the
definition of Qa,b;i,j we get that Q;J)ﬂ.’j is a subvector bundle of Qa,b;i,j~

Now on each fiber of the bundle Qa,b;i,j over Ua,bw we have the description given in lemma

. In particular, every g4 p..;(&,7) acts on Qg’b;m by fixing it. Therefore, we get that the

/

previous action of C x C* induces an action of the same group on Qqp;i,; ~ @, bii g
77 sVt

Now for every (a, b;, ) and (&, 7) as before we have a commutative diagram (6.19)), so the
action of C x C* is compatible with the projection 6,4, ;. So it makes sense to consider the
quotient

Rapij = (Qa,b;i,j N Q;,b;i,j)/((c x C*)

and the induced fibration

Papii * Rapiij — Vabiij-

The fibers of such a morphism are described as in lemma so each fiber is isomorphic
to C'~1 x P*~1. Now we recall that on Qa,b;i’j we have a family (éab;i,j, f)a’b;m) such that if
we denote by ¢ any point of Qa’b;m and by (E,V) the restriction of such a family to ¢, then
we have a pair of exact sequences:

0— (Ql?Wl) — (E27‘/2) — (Q17W1) — 07
0— (E2,V2) = (B, V) — (Q3,W3) = 0.

/

The first one is always non-split by construction of Ra;i; if ¢ belongs to me;i,j ~ Qa bii o

then also the induced sequence

0= (Q1,W1) = (E,V)/(Q1,W1) = (Q3,W3) = 0

is non-split. If we assume also conditions (6.1)), then by lemma we get that (E,V)
belongs to G’ € G (ae;n,d k) C G(af;n,d, k). Then by the universal property of the
scheme G(af;n,d, k) we get that the previous family induces a morphism

Babij * Qasi ~ Qupi; — Gladin,d k).

By the previous lemma, we have that @, 4 ; is invariant under the action of C x C*, so it

induces a morphism
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Gapsij : Rapig — Glagin,d k).
Finally, there are free actions of PGL(N7) on Gl, Ua;i and ]:Ea;i. Moreover, there are free

actions of PGL(N;) x PGL(N3) on ]:Zaﬂ- x G, Ua,b;i,j and Ra,b;i,j~ Then there are induced
fibrations

Pasi - Ra;i — Ua;ia
(pavb;iuj : Ravbvlm? Uavb;i’j'

with the properties stated in the claim of the lemma. The morphism @, ; is invariant under
the action on R, j, so there is an induced morphism

. +.
Wabiiyj © Rapig — Gladsn, d, k).

Such a morphism is injective (and has values in G’) because of the previous lemma, so we

conclude. An analogous conclusion holds if we assume conditions (6.2) instead of (6.1). O

Lemma 6.1.5. Let us fiz any triple (Qi, Wi)i=123 € H?zl G; and let us suppose that (Q1, W7) #
(Q2, Wa) % (Qs, Ws). Then the (E,V)’s with unique Jordan-Holder filtration at o and graded
®3_1(Q:, W;) are parametrized by pairs ([u], [V]) where:

e (1] € P(Ext' ((Q3,W3), (Q2, Ws))) and p has a representative of the form

0= (Q2,Wa) = (E", V") = (Q3, W3) — 0; (6.21)
e [v] € M([1]) :=P(Ext' ((E",V"),(Q1,W1))) \ P(Ezt' (@3, W3), (Q1, W1))).

The proof of this lemma is analogous to the proof of lemma so we omit it. Using such
a lemma we can prove the following proposition. The proof is analogous to that of proposition
6. 1.2

Proposition 6.1.6. Let us fix any triple (n,d, k), a critical value a. for it and a triple
(ng, di, k;)i=1,2,3 compatible with (ac;n,d, k). Let us assume that conditions , respectively
, are satisfied. Moreover, let us suppose that for every triple of points (Qi, W;)i=1,2,3 €
[T2_, Gi we have:

Hom((Q2, W2), (Q1,W1)) = 0 = Hom((Q3, W3), (Q2, W2))

(in particular, this holds if (n1,k1) # (na, k) # (ns, k3)). Let us denote by G' the set of
all the (E,V)’s in Gt (ag;n,d, k), respectively in G~ (ag;n,d, k), with unique Jordan-Hélder
filtration at a, and graded in H?:l Gi. Then there exists a finite family {Rqp.cij} of schemes
for (a,b,c) € N> x Ny, ¢ < b and i,j varying in finite sels (for a,b,c fived), together with
injective morphisms to G*(aen,d, k), respectively to G~ (ae;n,d, k), such that the images
form a disjoint covering of G' by locally closed subschemes. Every Rgp.ci; comes with a
sequence of 2 morphisms:
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Pa,b,c;i,j * Ra,b,c;i,j ” Ua,b,c;i,j C Gl X Ra;ia

Payi - Ra;i — Ua;i C Go9 X G,
where:
® Vabeij has fibers isomorphic to PPt P! and ©azi has fibers isomorphic to P4~1;

e {Ug.i}i is a locally closed covering of

Ua = {((QQ, Wg), (Qg, Wg)) S GQ X G3 s.t. dim E’Z‘tl((Q:g, Wg), (QQ,WQ)) = a};

every U, is a locally closed subscheme of G2 x G3 and so are all the Uy;’s;

e {Uspeijtj is alocally closed covering of

Ua,b,c;i = {((le Wl)a (EH’ VH)) € Gl X Ra;i s.1.
dim Eﬂt}'tl((E”, Vl/)? (Qh Wl)) = b7 dim Extl(@a;i(E”, Vl/)? (Qh Wl)) = C};

where Qq;; 15 the composition of @q;; with the projection to Gz. Every Uy i 15 locally
closed in G1 X R and so are the Ugp i ;s

If (no, k) = (ns, k3), then the previous results hold on G X (G2 X Gs ~\ Aag3) instead of
G1 X GQ X G3.

Remark 6.1.1. If we assume that

(Q1, W1) % (Q2,Wa) # (Q3,W3), Ext'((Qs,Ws), (Q1,W1))

then we can easily compare the descriptions of propositions and and we get that
those descriptions give rise to the same Hodge-Deligne polynomials.

Lemma 6.1.7. Let us fir any triple (Qi, W;)i=123 € H?:l G; and let us suppose that (Q1, W7) #
(Q2, Wa) ~ (Qs3,Ws3) and that

Ext® ((Q2, Wa), (Q1, W1)) =0

(with a little abuse of notation we will simply write (Q2, Wa) also for (Qs, Ws)). Let us denote
by u any class of a non-split extension of the form

0= (Q2, W2) == (E", V") = (Q2,W2) = 0 (6.22)

and by v any class of a non-split extension of the form
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0= (Q1,Wh) - (B, V) -2 (E", V") — 0. (6.23)

Hawving fized [u] € P(Ext'((Qz, Wa), (Qa2, W2))), let us consider the space Ext'((E", V"),
(Q1,W1)) and let us consider the action of C x C* on it given as follows. For every pair of
scalars (&, 7) and for every class of extension v with representative of the form , we set
(&,7) - v =1 where V' is represented by

0= (Q1,W1) == (B, V) -5 (B, V") = 0,

where &' = (£ -0 0k + T -idgnym)od. Let us write

M([u]) := Ext' ((E", V"), (Q1,W1)) \ Ezt'((Q2, Wa), (Q1, Wh));

then the previous action sends M ([u]) to itself, so it makes sense to consider M([u]) =
M([p])/(C x C*). Then the (E,V)’s with unique Jordan-Hdélder filtration at o and graded
®2_1(Qi, W) are parametrized by pairs ([u], [V]) where:

o (1] € P(Ext' ((Qa, W2), (Q2, Ws))) and p has a representative of the form ;

e [V] is any object of M ([u]).
Moreover, M([u]) ~ C*~1 x P*~1 where b = dim Ext'((Q2, Wa), (Q1, W1)).

The proof of this lemma is analogous to the proof of lemma so we omit it. Using such
a lemma we can prove the following proposition. The proof is analogous to that of proposition
6. 1.4

Proposition 6.1.8. Let us fir any triple (n,d, k), a critical value . for it and any triple
(n, di, ki)i=123 compatible with (ac;n,d, k). Let us assume that conditions , respectively
are satisfied. Moreover, let us suppose that (ni,k1) # (ne,ke) = (ns, ks) and that for
every pair of points ((Q1, W1), (Q2, W2)) € G1 x G2 we have:

Ext*((Qa2, Wa), (Q1,W1)) = 0.

Let us denote by G’ the set of all the (E,V)’s in GT (ag;n, d, k), respectively in G~ (ae;n, d, k),
that have unique Jordan-Holder filtration at o, and graded (Q1,W1) @ (Q2, Wa) & (Q2, Wa2).
Then there exists a finite family {Rqpi;} of schemes for (a,b) € N? and i,j varying in fi-
nite sets (for a,b fized), together with injective morphisms to G* (ae;n,d, k), respectively to
G (ag;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Every R, ; comes with a sequence of 2 morphisms

Pa,bsi,j * Ra,b;i,j — Ua,b:i,j C Gy x Ra;i:
Pasi - Ra;i ? Ua;i C Gy = G3,

where:
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® Vupbij has fibers isomorphic to Co-1 x pb—1.
e .. has fibers isomorphic to P4~L;

o {Ugi}i is a locally closed covering of

Uy :={(Q2,Ws) € Gy s.t. dim Ext'((Qz, Ws), (Q2, Wa)) = a};

every U, is a locally closed subscheme of Go and so are all the Ugy;’s;

o {Uspiijtj is alocally closed covering of

Uapi = {((Q1,W1),(E", V")) € G1 X Ry s.t. dim Ext*(pai(E", V"), (Q1,W1)) = b}.

Uaqpi s locally closed in G1 X Ry and so are the Ugp; j’s.

6.2 Jordan-Holder filtration of length 4

Let us suppose that at a. the graded of a coherent system (E, V) is &}, (Q;, W;) and that
(E,V) has a unique a.-Jordan-Holder filtration (therefore, that filtration coincides with its
ac-canonical filtration). We want to parametrize all the corresponding (E, V')’s, having fixed
the graded (and also its order, since the filtration is unique).

If the a.-JHF is unique, then the only proper a.-semistable subobjects of (E, V') with its

same a.-slope are:

e (Q1,W1), that is the only a.-stable one;
e an extension (Eq, V) of (Q2, W2) by (Q1, Wh);

e an extension (Es3,V3) of (Q3, W3) by (Ea, V2);

the quotient (E,V)/(Es,V3) will be isomorphic to (Q4, Wy). Let us denote by (n;,d;, k;) the
type of each (Q;, W;). If (E,V) has unique a.-Jordan-Hélder filtration, then it belongs to
G (ae;n, d, k) if and only if the following numerical conditions are satisfied:

ki + ko + k3 k

k
<= < . (6.24)
n ny + ng + ng n

k k k k
71< 1+ Ko

ni n n+ne

Using the fact that po, (E,V) = pa, (Qi, W;) for i = 1,--- 4, the last inequality can be
rewritten as kq/ng > k/n.

Analogously, if we assume that (E, V') has a unique a-JHF, then it belongs to G~ (a.; n, d, k)
if and only if the following numerical conditions are verified:
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k k ki +k k ki+ ko + kK k
b Rtk B Ritheths 6 (6.25)
n1 n ny + no n ni1 -+ ng + ng n

In both cases, we need a way of parametrizing all the (E,V)’s with unique filtration,
having fixed the graded. According to different cases, we will need one of the 4 descriptions
given below. A priori there are 5 possible trees associated to (F,V'), but for our purposes
(that is, the study of the case n =4,k = 1) we will need only the following one.

/\
/\ /\

We will basically divide our description in the following 4 cases:

(i) (Q1,W1) =~ (Q2,Ws) and (Qa, W) # (Qi, W;) for i = 1,2,3 (lemma and proposi-
tion ;

(i) (Q1,W1) # (Q2,Ws) and (Qq, Wa) # (Qi, W;) for i = 1,2,3 (lemma and proposi-
tion ;

(iii) (Q3,Ws3) ~ (Qa, W4) and (Q1, Wh) # (Q;, W;) for i = 2,3,4 (lemma [6.2.5] and proposi-
tion ;

(iv) (Q3,W3) % (Qa, Wa) and (Q1, W1) % (Qi, W;) for i = 2,3,4 (lemma [6.2.7 and proposi-
tion .

Remark 6.2.1. For each of these cases one should consider 2 different subcases according to
the fact that (Q2, W) and (Q3,Ws3) are isomorphic or not. In the second subcase we get
complete results as stated below, while the first subcase is still an open problem.

Lemma 6.2.1. Let us fix any quadruple (Q;, W;)i=1,... 4 € H?Zl G; and let us assume that
(Q1, Wh) = (Q2,W2) £ (Q3,W3), (Qa,Wy) % (Qi, Wi) Vi=1,2,3,

Bt ((Qa, Wa), (Q1,Wh)) = 0 = Euf® ((E",V"),(Q1,W1))

where (E", V") is any non-split extension of (Qa, Wy4) by (Qs3,W3). Let us denote by p any
class of a non-split extension of the form

(Qlawl) (B2, Vo) — AR (Q2,W3) — 0 (6.26)
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and by v any class of a non-split extension of the form

0 = (Q3, W) —= (E", V") =24 (Qu, Wa) — 0. (6.27)

Having fized (1] € P(Bzt'((Q1, Wh), (Q1,Wh))) and [v] € P(Eut' ((Qa, Wa), (Q3, W3)), let
us consider the space My ([u], [v]) := Ext'(E", V"), (E3,V3)), let us denote by 1 any object in
that space and let us choose a representative of n as follows:

0= (B, Vo) = (B, V) =25 (E", V") — 0. (6.28)

Then let us consider the action of C x C* on Mi([u],[v]) given as follows. For every
pair of scalars (§,7) and for every class n of an extension with representative , we set
(&,7)-n:=1n", where 0 is represented by

0= (Bs, Vo) &8 (B,v) 25 (B" V") = 0, (6.29)

where 1(§,7) == 10(§ 00Kk +T-idg,v,)). Let us denote by Ma([ul, [v]) the image of the linear
map A+ F where A and F' are the maps induced by and respectively, as follows:

A E:Etl((Q4, W4)7 (EQ, VQ)) — E:L‘tl((E”, V”)a (E2a VQ)) = Ml([:U’L [I/]),
F: Extl((EH’ V”)v (Q17 Wl)) — E:L‘tl((E//, VN)? (E27 V2)) = Ml([u], [V])

Let us write M ([u], [v]) := Mi([u], [v])~Ma([u], [v]). The previous action sends Ma([u], [v])
to itself, so it makes sense to consider M ([u], [V]) := M([u], [v])/(C x C*). Then the objects
(E,V)’s with unique o-Jordan-Hélder filtration and graded &1_,(Q;, W;) are parametrized by

triples ([u], [V], [n]) where:
e (1] € P(Ext' ((Qa, W), (Q1, Wh))) and p has a representative of the form (6.26));
o [v] € P(Eut' (Qa, W), (Q3,W3))) and v has a representative of the form (6.27);
o [n] € M([ul, [V)).

Moreover, if we write:

c:=dim Mi([u],[v]), d:= dim Ext'((Qu, W), (Fa, V3)),
e := dim Ext'((E", V"), (Q1,W1)), f := dim BExt'((Q4, Wa), (Q1,W1)),

then dim Ma([u], [V]) = d+e— f and M([u], [v]) ~ Co~1 x (Pee~l (Pd—/1).

Proof. Having fixed ®?_,(Q;, W;), let us denote by p and v the classes of any two extensions
as follows:

0— (Ql, W1> L) (Eg, VQ) L> (QQ, WQ) — O, (6.30)
0 — (Q3, W3) —= (E", V") -5 (Qq, Wy) — 0. (6.31)
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Having fixed [u] and [v] as in the claim of the lemma, we set M; ([u], [v]) := Ext*((E", V"),
(E5,V3)) and let n be any object of this space; let us consider a representative of it as follows:
0 — (B2, Va) = (E,V) 25 (E", V") — 0. (6.32)

Then let us consider the following 6 long exact sequences, induced by (6.30) and (6.31)).

0— HOHI((Q4, W4), (Eg, Vé)) — HOHI((EH, V”), (EQ, VQ)) — Hom((Qg, Wg), (EQ, va)) —
- Eth((Q4v W4)a (EQ’ ‘/2)) i Eth((EH> VH)’ (EQ’ ‘/2)) E} Eth((QBa W3)7 (EQ’ VvQ)) -
— Ext?((Qa, W), (B2, V2)); (6.33)

o= Ext!((Qs, Wa), (Q1,W1)) S Ext!((Qs, Wa), (Ea, Va)) 3 Ext'((Qs, W), (Q2, Wa));
(6.34)

0 — Hom((E", V"), (Q1,W1)) — Hom((E", V"), (Ey,V3)) — Hom((E", V"), (Qa, W2)) —
— Bxt!((E", V"), (Q1,W1)) LN Ext!((E", V"), (Ea, Vo)) — Ext!((E", V"), (Qa, W2)) —
— BExt?((E", V"), (Q1, W1)); (6.35)

cee = Eth((E”, V”), (Ql, Wl)) i) Extl((Qg, Wg), (Ql, Wl)) — EXtQ((Q4, W4), (Q1, W1));
(6.36)

0 — Hom((Q4, W4), (Q1, W1)) = Hom((Q4, W), (E2, V2)) — Hom((Qa, Wa), (Q2, W)) —
— Ext' (Qu, Wa), (Q1, W1)) 5 Bxt' (Qu, Wa), (Ea, Va)); (6.37)

0 — Hom((Q4, Wa), (Q1, W1)) — Hom((E", V"), (Q1, W1)) — Hom((Q3, W3), (Q1, W1)) —
— Ext!((Qa, Wa), (Q1, W1)) 2% Ext (E", V"), (Q1, Wh)). (6.38)

Let 77 := B(n) and let

0 — (E2,V2) — (E3,V3) — (Q3,W3) = 0 (6.39)

be a representative of it. In particular, we have a commutative diagram with exact lines:

0 (B2, Vo) ——— (E,V) —2— (E", V") 0.
Y 4 my €
0 (B2, Vo) —— (E3,V3) (Q3, W3) 0

(6.40)

Since ¢ is injective, using the snake lemma we get that also & is injective, so we get a
filtration:
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0cC (Ql)WI) = (Ela‘/l) C (E27‘/é) - (E3’V3) - (E,V) (641)
and it is easy to see that this is a Jordan-Holder filtration of (E,V) at a. with graded
®r1(Qi, Ws). Let us define 77 := D(7) = D o B(n) and let

0— (QQ,WQ) — (F,V) — (Qg,Wg) — 0

be a representative of it. In particular, by definition of D, we have a commutative diagram
with exact lines:

[0}

0 (B2, Va) (Es,V3) (Qs3, W3) 0
K my % &%
0 Qo W) — " (B, V) — S (Qs, W) 0.

(6.42)

Using the snake lemma, we get that £’ is surjective and its kernel coincides with the kernel
of k, i.e. with (Q1,W1) = (E1,V1). Then we get that 77 has a representative of the form:

0 = (Q2, W2) — (E3,V3)/(E1, V1) — (Qs, W3) — 0. (6.43)
Now let us apply proposition [2.2.1] Having fixed the Jordan-Hélder filtration (6.41)), this
is the unique a.-Jordan-Holder filtration of (E, V') if and only if all the sequences

0= (Qi, Wi) = (Eiy1, Vig1)/(Ei1, Vic1) = (Qir1, Wiy1) = 0

are non-split for ¢ = 1,2,3. This is equivalent to imposing that u,v and 7 are all non-zero.
So having fixed u and v both non-zero, we have to remove from M ([u], [v]) = Ext'((E", V"),
(Es, V5)) all those n’s such that 77 = DoB(n) is zero. Using the exactness of (6.34), DoB(n) = 0
if and only if B(n) € Ker D =1Im C.

Now let us consider the following diagram.

Ext'((E", V"), (Q1, W)

Ext'((E", V"), (Es, Va))

Ext'((Qs, Ws), (Q1, Wh)) Ext'((Qs, W), (B2, V2)).

Such a diagram is commutative by naturality of the functors Ext!'(—, —)’s. By the hy-
potheses of the lemma, we have that [ is surjective. Therefore, Im(C) = Im(C o I) =
Im(Bo F). Son = 0if and only if B(n) € Im(B o F), i.e. if and only if there exists
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e € Ext'((E",V"),(Q1,W1)) such that B(n) = B o F(e), i.e. if and only if there exists such
an € such that n — F(€) € Ker(B) = Im(A) (using the exactness of (6.33)). In other terms,
7 = 0 if and only if there is a pair of extensions (€, €)

¢ € Ext'((Qu, W), (E2, Vo)), € € Ext' (E", V"), (Q1, W1)),

such that n = A(e) + F(e). So the set of the n’s that we have to remove from M;([u], [v])
coincides with the image Ma([u], [v]) of the linear map

A+ F : Ext'((Qa, W), (Ba, V2)) @ Ext' (E", V"), (Q1,W1)) —
— Ext!'((E", V"), (B, Va)) = My ([u], [v]).-

Now we need to give a better description of the linear space My ([u], [v]); in particular, we
need to compute its dimension:

dim Ms([u], [v]) = dim Im(A) + dim Im(F') — dim Ms([u], [v])

where we denote by Ms([u], [v]) the linear space Im(A) N Im(F) C Ma([u], [v]). We need to
compute the 3 values in the right hand side of the previous identity.

The space Im (A). We claim that in (6.33) we have:

Hom((E", V"), (Ba, Va)) = 0. (6.44)

Indeed, let us fix any morphism ~ in such a space. Let us consider v, := Koy : (E", V") —
(Q2, W) and 732 1=y 0¢ : (Q3, W3) — (Qa, Wa). If v35 is non-zero, then we get that it is an
isomorphism and so 72 gives a splitting of , but this is impossible because we assumed
that such an extension is non-split. Therefore, v32 = 0; by exactness of we get an
induced morphism 49 : (Q4, Ws) — (Q2, W) such that v = 742 0 6. Since (Q4, Wy) and
(Q2, W3) are both a.-stable of the same slope and not isomorphic, then y49 = 0, so y2 = 0.
Therefore, by exactness of we get an induced morphism v : (E”, V") — (Q1,Wh)
such that v = o o7y. Then let us consider v31 := v3 0¢ : (Q3,W3) — (Q1,W1). If it is
non-zero, then ~; gives a splitting for , so we get a contradiction. So y3; = 0. There-
fore yoe = o 0 y31 = 0. By exactness of (6.31)), we get that there is an induced morphism
v i (Qa, Wy) — (F2, Vo) such that v =+ 0 4. Since the graded of (E2, V) does not contain
an object isomorphic to (Q4, Wy), then 4/ is necessarily zero. So v = 0 and the claim is proved.

By hypothesis we have (Q1, W) ~ (Q2, Wa) % (Q3,W3). Since (6.30)) is non-split, then
the only proper a.-(semi)stable subsystem of (Esq, V2) is (Q1, W7). Since (Qs, W3) % (Q1, W1),
then

HOHI((Q3, W3), (EQ, VQ)) = O, (6.45)

so the map A is injective by (/6.33)).



6.2 Jordan-Hélder filtration of length 4

87

The space Im(F). We claim that in (6.35) we have:

Hom((E", V"), (Qa, Wa)) = 0. (6.46)

By contradiction, let us suppose that it contains a non-zero morphism. Then we get an in-
duced non-zero morphism from (Q3, W3) or from (Q4, W) to (Q2, Wa2); since all the (Q;, W;)’s
are ae-stable, then we would get an isomorphism. But we cannot have an isomorphism from
(Qq, Wy) to (Q2, Ws) because of the hypotheses of the lemma. Also, by hypothesis we cannot
have an induced isomorphism from (Q3, W3) to (Q2, W2). So we get that the map F'is injective.

The space M;3([ul,[v]). Let us consider the following diagram, that is commutative by
naturality of the functors Ext!(—, —)’s.

Ext!((Qq, W), (Q1, W1))

Ext!(Q4, Wy), (Fa, V5))

M % A

Ext'((E", V"), (Q1, W)

Ext!((E", V"), (Ea, Va)).

Since such a diagram commutes, we get that Im(A o L) = Im(F o M). We denote such
a vector space by Ms([u], [v]) € Ms([u], [v]). We want to prove that actually Ms([u],[v]) =
M([p], [v])- In order to do that, let us fix any object n in Ms([u], [v]); by definition of this
space there exists a pair of objects

¢ € Ext'((Qq, Wy), (E2, V2)), € € Ext' (E", V"), (Q1, W)

such that A(e) =n = F(€). Let us fix representatives for 1, € and € given respectively by

0= (Ba, Vo) = (B, V) 25 (E", V") — 0,

V)
0= (B2, Vo) == (E,V) =5 (Qu, W4) — 0,
0= (Q1,W1) —= (B, V) =2 (E", V") — 0.

Since A(e) = n = F(€), we have a commutative diagram with exact rows as follows.
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0 (Q1, 1) (E.7) (E", V") 0
o m o’ %
0 (B, Vo) —— (E,V) —>— (E", V") 0
m & m )
0 (B, Va) (E,V) 2 (Qa, Wy) 0.

By the snake lemma applied to the first 2 lines, we get that o’ is injective with cokernel
(Q2,W3); again by the snake lemma applied to the second and to the third line we get that
Ker §' ~ Ker § = (Q3,W3). Let us set v := & oo’ : (E,V) — (E,V).

We claim that ~ is not injective. By contradiction, let us suppose that v is injective. If
we apply the snake lemma on the whole diagram, we get a long exact sequence:

0 =Ker 0 — Ker v — Ker 6 = (Q3, W3) o,
9, Coker o = (Q2, W3) — Coker v — Coker § = 0.

If we assume that Ker v = 0; then we have that © is injective, so it is an isomorphism by
lemma So Coker v = 0, so v is an isomorphism. Then this implies that

(Q1, W1)&(Qs3, W3)®(Qu, Wy) = gr, (E,V) ~gr, (E,V)) = (Q1, W1)&(Q2, W2) B (Q4, Wa).

This implies that (Q2, Wa) ~ (@3, W3), but this contradicts the hypotheses. Therefore we
conclude that « is not injective.

Now ¢’ is injective and Ker ¢’ = Ker 6 = (Qs3,W3), so v is not the zero morphism.
Both the source and the target of such a morphism are a.-semistable with the same slope
by construction. Therefore by proposition there exists a coherent system Im(y) =:
(E,V) C (E,V), that is again a.-semistable with the same slope as the previous objects.
Then we consider the following diagram:

0 (Q1, W) ——— (B, V) —>— (E",V") 0
N e vy )
Nt Y. Maew
0 (Q1, W) E,V (Q4, Wy) 0.

(6.47)



6.2 Jordan-Hélder filtration of length 4

89

Using the previous diagram, this diagram is obviously commutative. Moreover, the second
line is exact. Indeed:

° 7|(E,f/) orT =100, so it is injective since both v and o are so;

° X|(E ) is surjective because the square on the right is commutative and both § and A

are surjective;

o Mg o (g 0T =d0XoT =0; 50 Im(y] 5 07) € Ker(A| ) € (B, V). Since 7 is
not injective, then the length of any a.-Jordan-Holder filtration of (E , V) is strictly less
than the length of any a.-Jordan-Hélder filtration of (E,V), so it is less or equal than
2. So necessarily the first inclusion must be an identity.

If we denote by é € Ext!((Qq, W), (Q1,W1)) the extension in the second line of (6.47),
then such a diagram proves that e = M (é). So we have proved that for every n € Ms([u], [v])
there exists é € Ext’((Q4, Wa), (Q1, W1)) such that n = F o M(é). So this proves that

Ms([u], [v]) = M3([u], [v]). (6.48)

The space M ([u], [v]). We need to compute dim Ma([u], [v]). In order to do that, we fix
the following notation:

dim Ext!((Q4, Wy), (B2, V) :=d, dim Ext'((E",V"),(Q1,W1)) :=¢

dim Ext'((Q4, Wa), (Q1, W1)) := f.

We have already proved that the maps A and F and M are injective, so dim Im(A) = d,
dim Im(F) = e. Moreover, using the hypotheses together with (6.38) we get that also M is
injective. Therefore, dim Mjz([p], [v]) = dim Im(F o M) = f. Then we get:

dim Ms([p],[v]) =d+e— f. (6.49)

For the moment we have proved that for all triples (u,r,n) as before with p,v # 0 and
n € M([u],[v]) = Mi([p], [v]) ~ Mg([u],[ ]), we have that the induced (E,V’) has unique
ac-Jordan-Hblder filtration and graded @©%_,(Q;, W;). The set parametrizing all the (Ea, Va)’s
is given by P(Ext!((Q2, W), (Q1, W1))); analogously, the set parametrizing all the (E”, V")’s
is given by P(Ext!((Q4, W4), (Q3, W3))). Moreover, for every (Ea, V3) and (E”, V") in those 2
spaces, we have that Aut(E”, V") = C* and Aut(E», V3) = C x C*. Moreover, we have proved
in that Hom((E”, V"), (Ea, V2)) = 0.

);
)-

So we have an induced action of C x C* on M ([u], [v]) as follows

Cx C* x My([u],[v]) — Mi([pl,[v])
&mmn) — nr),

where 7(&, 7) has a representative of the form
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0= (Es, Vo) &% (B,v) 25 (B" V") = 0,

where +(§,7) :== 10 ({ 00k +T-1d(g, 1)) Now we want to prove that Ma([u], [v]) is sent to
itself by such an action. So let us suppose that n € Ma([u], [v]) with representative (6.32); by
definition of Ma([u], [v]) we have Do B(n) = 0, i.e. we have a commutative diagram with exact
rows (obtained by (6.40), (6.42) and (6.43))) and such that the last line is split, as follows.

0 (B, Vo) ——— (B, V) —— (E",V") 0
~ ~
0 (B, Vo) — 2 (B, V3) —— (Qs, W) 0
. A N
0 (Qa W) 5 (B3, V3)/(Q1, W)~ (Qs, W53) 0.

(6.50)

Now let us fix any pair (§,7) € Cx C* and let us set a({,7) := ao(§ 00K+ 7 id(g, 1s))-
Then we have:

wgr)=coa(l ), KoalT)=T1 00k

Then we get a commutative diagram with exact rows

(&) A

0 (B2, Va) (E,V) (E", V") 0
~ ~
0 (o, Va) =57 (B, Vi) — 2 Qs W) 0
K m K 8%
0 (Qa. W) “% (B3, V3)/(Qu, W)~ (Qa, W3) 0.

(6.51)

The last line is a representative of D o B(n(§,7)). Since the last line of is split,
then we get that also the last line of is split. So we get that n(§,7) € Ma([ul, [v]). So
we have that C x C* acts on M ([u], [v]) := Mi([u], [v]) ~ Ma([u], [v]). Moreover, we can also
prove easily that (C x C*)(Im(F)) C Im(F) C Ma([u], [v]). Therefore, such a group acts also
on the subsets
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M’ = My(j], V) < Im(F),  M" = My([u],[v]) ~ Im(F).

By construction we have:

M ([u], [v]) = Ma([u], [V]) ~ Ma([u], [v]) = M' ~ M".
Now let us consider the exact sequence (6.35). We have already proved in (6.46) that
Hom((E",V"),(Q2,W2)) = 0. Moreover, by hypothesis
Ext?((E",V"),(Q1,W1)) = 0.
Since (Q1, W1) =~ (Q2, Wa), we get a short exact sequence

0 — Ext!((E", V"), (Q1,W1)) 5
B Ext (B, V"), (Es, Va)) — Ext ((E", V"), (Q1,W1)) — 0.

So we have a (non-canonical) isomorphism

M’ = My([u], [v]) ~ Im(F) ~
~ Ext'((E",V"),(Q1,W1)) x (Bxt'((E", V"), (Q1,W1)) ~ {0}).

Under this isomorphism the action of C x C* on M’ is given for every pair of scalars (&, 7)
and for every (ni,m2) € M’ as: (&,7) - (n,m2) = (T-m + & 2,7 1n2). Now if we write

¢ :=dim M ([ul, [v]), we get:
M' ~C°~\C°=C°x (C°~{0}),
M" ~ CHe=F € = C¢ x (CHF{o)).
Then:

M([p], [v]) = M([u], [v])/(C x C*) = (M'\ M")/(C x C") =
— ((Ce—l % Pc—e—l) N (Ce—l % Pd—f—l)'

So we conclude. O
Proposition 6.2.2. Let us fix any triple (n,d, k), a critical value o for it and any quadruple
(ni, di, ki)i=1,... 4 compatible with (cae;n,d, k). Let us assume that conditions , respec-
tively (6.25)), are satisfied. Moreover, let us suppose that (n1,k1) = (ng, ko). Let us denote

by G' the set of all the (E,V)’s in GT(ae;n,d, k), respectively in G~ (ae;n, d, k), that have
unique oe-Jordan-Hélder filtration at a. and graded given by @le(Qi, W), such that

(Q17 Wl) = (QQ?WQ) 9£ (Q?n W3)> (Q4a W4) ;é (Q’La WZ) Vi=1,3,
Ext® ((Q4, Wy), (Q1, Wh)) = 0 = Ext? (E", V"), (Q1,W1)),
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where (E", V") is any non-split extension of (Qa, W) by (Qs,W3). Then there exists a fi-
nite family {Rapcde fiji} of schemes for (a,b,c,d,e, f) in N, and i,j,1 varying in finite
sets (for a,b,c,d,e, f fived), together with injective morphisms to Gt (ae;n,d, k), respectively
to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Every scheme Ry pcde, fii,51 comes with a triple of morphisms

. b. y

Soa,b,c,d,e,f;i,j,l : Ravbzczdzemf;iujJ Uaabvcvd7€1f:i)j’l - Ra7l X R 7]7
Pasi * Ra:i — Ugsi C G = G,
P R — U € Gz x Gy

where:

® Vabedefigl has fibers isomorphic to CE1x (P~ INP /1) ¢, has fibers isomorphic
to P 1 and <pb?3 has fibers isomorphic to Pbil;

o {Uy.iti is a finite disjoint locally closed covering of

U, := {(QLWI) € G1 s.t. dim E:L‘tl((Ql, Wl), (Ql, Wl)) = CL};
every U, is a locally closed subscheme of G and so are all the Uy;’s;

o {U%I}; is a finite disjoint locally closed covering of

Ub = {((Qg, Wg), (Q4, W4)) S G3 X G4 s.t. dim E:L‘tl((Q4, W4), (Qg, Wg)) = b};

every UP is a locally closed subscheme of Gz x G4 and so are all the U%J’s;

o {Uspede fijlhi is a finite disjoint locally closed covering of

Uapede i = (B2, Va), (E", V")) € Ry x R¥ s.t. dim Ext'(E", V"), (E2,V2)) = c,
dim Bzt (% (E", V"), (B, Va)) = d, dim Ext'(E", V"), ¢a:i(Ea, Va)) = e,
dim Ext' (3% (E", V"), pasi(E2, Vo)) = f,  ¢a:i(Ea, Vo) % (E",V")},  (6.52)

where Q% is the composition of ¥ with the projection to G4 and @%J is the composition
of gob5j with the projection to G3. Every Uayp cde, fii; 45 locally closed in Ry x R%J and
so are all the Ugp cde,fii0's- The last condition of can be omitted if (n1, k1) =
(ng, kg) 75 (ng,kg,); it 18 necessary if (nl,kl) = (ng,kg) = (ng, kg).

Proof. Let us fix any sequence (a, b, c,d, e, f) € N® and let us denote by (QZ, WZ) the local uni-

versal families over the various Quot schemes G;’s for i = 1,--- 4. Since (n1, k1) = (ng, k2),
then d; = dy and G1 = Go, so in particular, (Ql,Wl) = (QQ,WQ).
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Let us consider the scheme G3 x G4 and let us denote by p3 and p4 the projections from
such a scheme to its factors. Having fixed b, let us consider the locally closed subscheme of
G’g X G’4 defined as:

U := {t € G3 x Gy s.t. dim Ext!((p, pa)*(Qa, Wa)s, (B, 3)* (D3, W3):) = b}.

By hypothesis for each t € G x G4 we have:

Hom((ﬁﬁlvﬁ4)*(g4a W4)t7 (ﬁgvﬁ?))*(g?)y W3)t) =0.

So we can apply the usual results on families of classes of extensions and we get that there
is a finite disjoint covering {Ub;j}j of U by locally closed subschemes; for every j there is a
locally free sheaf on U

. o on nws A an oA VY
W = gath (6 90) (0, W), (35, 53)" (s, W) )

and a projective bundle

@b;j : Rb;j = ]P)(?:[b;j) — Ub;j C Gg X G4

with fibers isomorphic to P?~!. By abuse of notation, we denote by ¢/ also the composition
RY — G5 x G4. Moreover, there exists a family (c‘:’b?j VL ) parametrized by RYJ and a family
of classes of non-split extensions parametrized by Rb:

i abiivs /Al A s/ A ~ bj
0— (95 b’]a‘apbd) (pé)p3) (Q3,W3> ®]5Lb;j ORb;j(l) - ]; (653)
J

bid L ap gy BT g A
s (EB9,V0T) = (p, @8I )* (9, pa)*(Qa, Wa) — 0.

Such an extension is universal in the sense of corollary [4.4.4] Now let us pass to the scheme
Gl = ég. Since the objects of this scheme are a.-stable, we get that for each point t € G’l we
have

dim Hom((Q1, W1 )y, (Q1, Wi):) = 1.
Let us apply proposition on G with the two families of coherent systems both
coinciding with (Q1,W;). Then we get that the set
U, == {t € Gy s.t. dim Ext'((Q1, W)y, (Q1,W1):) = a}
is a locally closed subscheme of G1 and there exists a finite disjoint covering of U, by locally

closed subschemes Ua;i; on each Ua;i there is a locally free sheaf

7:la;,- = 5:zt71r0 _

a;i

((Q17W1),(Q1,W1)>V

and a projective bundle
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@a;i : Ra;i = P(/}:la;i) — Ua;i C Gl

with fibers isomorphic to P4~!. By abuse of notation we denote by @,; also the composi-

tion R,; — G1. Moreover, there is a family of classes of extensions {e,} over R,; of

TERa;i
(Dreis Pa; ) (91, W) by (i Pasi)* (Q1, V1) B4, Op. . (1). Such a family of extensions is
universal on the category of reduced Ua i—schemes Now by definition of family of classes of
extensions, for each i there is an open covering {Ra;i}ke K of Ra;z together with a family of

classes of non-split extensions:

0— ((@;;p‘ﬁa;i)*(élywl)(g[% O]%al(l))‘}%’; ia (gclfzvvc]: ) (Spa z?‘pa Z) (Q17W1)|R21 —0

a;i

(6.54)
over Rlcfi such that e, is the restriction of 1) for each r € Ra;i Since R]a“l- is noetherian,
then we can assume that K is a finite set and we denote its elements by {k1 < -+ < ky}.

Then for each set ke = {k] < -+ < kL} C K we define the locally closed subscheme

/\k‘/

~ Ak-’g N ~
R’;;Z. = (RN R ) N (Rt U URG) C Ray,

where {k;,; < --- < k.} is the complement of k, in K. Since K is finite, we get that these

schemes form a finite locally closed disjoint covering of Ra;i. For each ko we consider the

embedding of Rk‘ in R . and we pullback (6.54)) (for k = k{) via that morphism. So for each
ke we get a famlly of non split extensions:

ke Fe
0= (Pl 0s) (Qu V)5, Op ()]s ™ (E08, V50 ™5 (Pl ) (Q1, W) e =0

(6.55)
over f%k' Now for every choice of indices (a, b; i, j, ke) we consider the scheme T := Rk' x RYI
together with the projections p1s and psq to the 2 factors. Then we define Ua'b cdefrisj 85 the
subscheme of T' described by

{t € T s.t. dim Ext!((phy, p3a)*(E%, V), (g, P12)* (8(“,)}]“) ) =c,
dim Ext’ (P, p3a)" (27, 0")" (B a)" (Qa, Wa)e, (Brz, r2)” (Egs Vit)o) = d.
dim Bxt! ((phy, 34)*(E%9, V), (g, P12)* (Plsis Paii) (Q1, Wi )e) = €
dim Ext! ((phe, p34)* (8", ") (P, )" (Qa, Wit (P2, Pr2)* (Dl Pa) " (Q1, Wh)i) = f,

Hom((phy, p3a)* (27, ¢%9)* (0, p3)* (Q3, Wa )i, (Dhgs P12)" (Plasis Pasi)* (Q1, W1)) = O}

By proposition this is a locally closed subscheme of Rk‘ x RY. By construction, we
have that each R . 1S locally closed in Ra i, SO each Uks ab.c.de, fii is locally closed in Ra 4 X RYJ
., defined as the subscheme of R, azi X RYJ covered
by all the schemes of the form U f?; cdie, i This is a disjoint covering of such a scheme by

Then let us con51der the scheme Ua,b,c,d,e, ¥
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locally closed subschemes of Ra;i x RV Therefore, this gives a disjoint locally closed covering

of Uap.c,de,firj-

By construction, for each t € (A]f"l)7c7d7e’f;i7j, we have that the coherent systems (ﬁﬁg,ﬁlz)*(é’fﬁ,
Vf;'i)t and (phy, P3a)*(E%9, V), are both a.-semistable. Moreover the numerical conditions
we are considering and the condition that both (6.55) and (6.53) are non-split over each fiber

prove that:

~

Hom ((phy, p3a)* (E%, VP),, (]5/127}512)*(55;27 ]}f;'i)t) =0

for all t € ﬁf,%,c,d,e,f;i,j (see ) Moreover, by construction

dim Ext' ((pha, psa)” (€7, V)0, (915 p12) (€33, Vo))
is constant on U f.b cdefiig: Then we can apply proposition for such a scheme and we

get that there is a finite disjoint locally closed covering {Uf‘b’clde f-z‘j}ll of Uf‘bcde / For

i,
each [; there is a locally free sheaf on the corresponding scheme:

gyke — el 5 eV (EBT TPBIY (o o) (EFe Phe v
abe,d.e, fiig T xz Wﬁk.’ll (p347p34) ( 9 )’(pIQ’p12) ( a;i? a;i)

a,b,c,d,e, fii,j

and a vector bundle

Akull . 9 kull —— ’ knll 2 k’o,ll
a7b7c7d7e7f;i7j : a7b7c’d’e7f;i7j T V( a7b7c7d7e7f;i7j) a7b7c7d7€7f;i’j

together with a family (£°" Phe l1
& Y Capede,fiij Vabedefiij

there is a universal extension over that scheme given by:

: (; k?o,ll
) parametrized by Vb ede i Moreover,

ke,lq

’ ~ A L s

~ke,l1 ~ke,l1 PN A [ Oke ke\ ab.c.dye, fiig
0= (Pabiedefiig Pabedefig) Pr2:P12)" (€5 Vai)

ke,l1 ke,l1

Larbrerdye, f1irg (gk.,ll kel ) arberde, fiivi (6.56)

ab,e,d.e, fii,57 Vasbe,de fiisg :

ke,l1

Aa,b,c,d,e,f;i,' A/k;.,l ~ke,l N N Abesi o
— ! (Soa,b,c,ld,e,f;i,j’ SOa,b,é,d,e,f;i,j)*(péél?p34)*(5b’]7 Vbd) — 0.

Now let us consider the pullback of the sequence ({6.53]) via the morphism Uf'blcl de.fii

C%
I:ZM- x Rbd P Rbi (we denote again by ps4 this morphism) and let us apply to the new exact

sequence the functor

o ~ Gke Yike
Homﬂf]k.,ll <_7 (p/127p12)*(8a;i7 Va;i)> :

a,b,c,d,e, f;i,j

Then we get a long exact sequence:

HOmT"Ak.,ll ((ﬁg47ﬁ34)*(¢

a,b,c,d,e, f;i,j

b;ja (ﬁb;j)*(ﬁgvﬁ?))*((é& W3)®Rb;j01%b;j(1))a (ﬁ/127ﬁ12)*(£5;;7 )}5:@)) —
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A Nk aTbij Y, A Nk Ok . A
Sty (BB (B, ) (5 5a)" (Qa W), (Bl r2)” (€13, V) ) =
a,b,c,d,e,f;i,j
—> Ext}r ke,lq ((pg47p34)*(éb;j7 ]}b;j)v (ﬁ/lbﬁl?)*(ga R Vf.))

a,b,c,d,e, fi,5

Let us consider the first sheaf in that exact sequence. As we said in the previous lemma
(identity ), for each pair ((Qs, W3), (E2,V2)) we get that Hom((Q3, W3), (E2,V2)) = 0.
Then by base change and if necessary by restricting to a subcovering of f’b’lcl die,fi.] the first
sheaf is zero. Moreover, the second sheaf of the previous sequence is locally free if restricted

to any such subscheme (this is because of the definition of Ua bede frig):

Analogously, let us consider the following long exact sequence obtained by applying the
functor

HomﬁAkhll ((ﬁg47ﬁ34)*(éb;j7vb;j)7 _>

Uabcdef'ij

to the pullback of 1} from Rk' to Uf‘b’lcldef i

" Homﬂ'ﬁk.,ll <(I5§4a]534)*(£b;j7 f)b;j), (]5/12@12)*(@2;1‘, @a;i)*(QL W1)|R’;7i) —

a,b,c,d,e, fi,j

—eatk (s (€9, 009),
Ua b,c,d,e, f;i,7

A~ N Nk[/ A ~ - N F

(r2: D12) (Pasis @as) (1, W1) @, O (1) e )

a;t

—> gxt}rUk 1y ((ﬁg47ﬁ34)*(éb;j7 ]}b;j% (ﬁ/127ﬁ12)*(éa .9 Vf.)) .

a bcde,f;zﬂ,j

Using base change together with (6.46)) and the fact that (Q2, W2) ~ (Q1, W7), we get that
the first sheaf is zero. Moreover, having fixed the invariant e, the second sheaf of this exact

sequence is locally free.

Let us denote by [ any collection of indices (ks, l1). By construction [ varies over a finite set,
80 we get a finite disjoint locally closed covering {Ua bede fiid. 1} of Uabcdefw According
to this notation, we denote by Va boed,e, il (Ea bye,doe, il Va7b7c7d7e7fm,l) etc. all the various
objects we have defined so far.

Moreover, by restricting to any subscheme Uy p ¢ e, f:i,5,; We can rewrite the previous 2 long
exact sequences as injective morphisms of vector bundles as follows:

0—>Vbcdef,,jl )VGde€f77jl

and

0_>Vbcde,f,z,jl >‘/abcde,f,z,jl
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According to the computations of the previous lemma, the induced morphism of vector
bundles

.11 72 7 .
A + F: Va,b,c,d,e,f;i,j,l S3) Va,b,c,d,e,f;i,j,l - Vd,b70,d7€7fﬂa]=l
has constant rank (equal to d+ e — f), so its image is a subvector bundle of Vj 4 ¢ d.c,f:i.j.1 (see

for example, [LP2), proposition 1.7.2]). We denote such a vector bundle by V/,b,c,d,e,f;i,j,l'

a

Now we perform the same construction we did in the proof of proposition in order
to get an action of C x C* on Va,b,c,d,eyfm’l; using lemma such an action restricts to an
action of the same group on the scheme

A ¥ !
Qa,b,c,d,e,f;i,j,l = Va,b,c,d,e,f;i,j,l ~ VQ,b,C,d,@,f}'L‘,j,l'

As in the already cited proposition we get that such an action is compatible with the
fibration to Uy p e de,fii,ji- S0 it makes sense to consider the quotient

Rapcde fiigt = Qapedefigt/ (C x CY)
and the induced fibration

Pabcdefiigl - Rapede fiigl = Uabede fiil-

The fibers of such a fibration are described as in lemma [6.2.1] so each fiber is isomor-
phic to C*~! x (Pe¢~1 P4~ /~1). Now we recall that on Qa,b,c,d,@f;,-’j’l we have a family
(éa,b,c,d,e,f;i,j,ly)}a,b,c,d,e,f;i,j,l) (given by restriction of the central term of ), such that if
we denote by ¢ any point of Qa,b,c,d,e,f;i,j,l and by (E, V) the restriction of such a family to g,
then by lemma we have a triple of exact sequences:

0— (Ql?Wl) — (E27‘/2) — (Ql,Wl) — 07
0— (Qg,Wg) — (EW, V”) — (Q4,W4) — 0,
0— (Eq,V2) = (E,V) = (E", V") =0,

such that both the first 2 sequences and the induced sequence

0= (Q2, W2) — (E35,V3)/(Q1,W1) — (Q3,W3) =0

are non-split. Then by lemma (E,V) has a unique a.-JHF. Now let us assume conditions
(6.24) (an analogous proof holds for conditions (6.25))). Then (E,V) belongs to

G' C Gt (ae;n,d, k) C G(afin,d, k).

Then by the universal property of the scheme G (o ;n,d, k) we get that the previous family
induces a morphism

. A +.
wavbzcvdzemf;imjal . Qaﬁb»C’dye:f;iij G(ac n, d7 k)
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By lemma we have that Wgp e de,fiij0 18 invariant under the action of C x C*, so it
induces a morphism
— . P +.
Wapbedefigl * Rapedefiijl — Glagin, d,k).

Finally, there are free actions as follows.

e PGL(Ny) acts freely on G’l, [)’a;i and Ra;i; this induces a projective fibration

Pasi * Ra,i — Ua,i

with fibers isomorphic to P~1. The family {U,;}; is a finite disjoint locally closed
covering of the subscheme U, C G described in the claim of the proposition.

e PGL(N3) x PGL(Ny) acts freely on Gy x Gq, UY and RY; this induces a projective
fibration

b R s b

with fibers isomorphic to P*~!. The family {U"’ }; is a finite disjoint locally closed
covering of the subscheme U’ C G3 x G4 described in the claim of the proposition.

o PGL(Ny)x PGL(N3)x PGL(Ny) acts freely on Rai X R%, Uy pedefiii and Rapede fii;
this induces a fibration

@a’b7c’d7e’f;i,j,l : Ra)b7c)d?e7f;1:7j7l Ua7b7c7d7e7f;i’j’l

with fibers isomorphic to C~! x (P¢=¢~ 1\ P4~/~1). The family {Uapc.de,f:i.1}1 is a finite
disjoint locally closed covering of the subscheme Uy, p c.de, f:i,j C Razi X RY7 described in
the claim of the proposition.

The morphism Wy p ¢ d.e,f;i,5, 18 invariant under the action on Ry p ¢ d.e, f:,5,1, SO there is an
induced morphism

. ; +.
wazb}cyd’eyf;imjvl . Ravbzcvd7€7f;i’j’l G(ac 1, d’ k)'

Such a morphism is injective (and has values in G’) because of the previous lemma, so we
conclude. O

Lemma 6.2.3. Let us fix any quadruple (Q;, W;)i=1,.. 4 € H;l:l G, and let us assume that

(Q1, W1) 2 (Q2, W) #£ (Q3,W3), (Q4,Wy) £ (Qs, W;) Vi=1,2,3,
Eut® ((Qa, Wa), (Q1, Wh)) = 0 = Ext* (E",V"),(Q1,W1)),

where (E", V") is any non-split extension of (Qa, Wy) by (Q3,W3). Let us denote by u any
class of a non-split extension of the form



6.2 Jordan-Hélder filtration of length 4 99

0= (Q1, W1) -5 (B, Vo) == (Q2, W2) = 0 (6.57)

and by v any class of a non-split extension of the form

0 = (Q3, W) —= (E", V") =25 (Qu, Wa) — 0. (6.58)

Hawving fized [u] € P(Ezt' ((Q2, Wa), (Q1,W1))) and [v] € P(Ext' ((Q4, Wa), (Q3, W3))), let
us consider the space My([u], [V]) := Ext'(E", V"), (E2,V3)) and let us denote by Ma([u], [V])
the image of the linear map A+ F where A and F are the maps induced by (6.58) and (6.57)
respectively, as follows:

A But' ((Qa, Wa), (B2, V2)) — Eat' (B", V"), (B2, Va)) = My([ul, [V]),
F: Bxt' (B, V"), (Q1,Wh)) — Ext' (E", V"), (Ea, Va)) = My([u], [V]).

Then the objects (E,V)’s with unique o.-Jordan-Hélder filtration and graded ®}_,(Q;, W;)
are parametrized by triples ([u], [v], []), where:

e (1] € P(Ext ((Qa, W), (Q1,W1))) and p has a representative of the form ;
e [V] € P(Ext' ((Qq, W4), (Q3,W3))) and v has a representative of the form ;

e [n] € M([u], [v]) := P(Mi([u], [v])) ~ P(Ma([u], [v]))-

Moreover, if we write:

c:=dim Mi([u],[v]), d:= dim Bxt'((Qq, Wy), (E2, V3)),
e := dim Egt'(E",V"),(Q1,W1)), [ := dim Eot'((Qa, W), (Q1, W1)),

then dim My([u],[v]) =d+ e — f and M([u], [v])) ~ Pe—1  Pdte—f=1,

Proof. The proof is analogous to the proof of lemma [6.2.1] In this proof we need to consider
2 subcases as follows:

(a) Hom ((Q3,W3), (Q1,W1)) = 0;
(b) Hom ((Q3,W3),(Q1,W1)) =C.

Since (Q1,W7) and (Qs3,W3) are both a.-stable of the same slope, these are the only 2
possibilities. Using the hypotheses of this lemma, these conditions can be restated as:

(a) (Q1,W1) £ (Q2,W2) % (Q3,W3) and (Q1, W1) % (@3, W3);
(b) (Q1,W1) ~ (Q3,W3) 2 (Q2, Wa).
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Then the proof is on the same line of the proof of lemma so we just describe briefly
the relevant changes. We consider the same 6 long exact sequences (6.33))-(6.38)) of that lemma.
Exactly as in that lemma we get that the (E,V)’s we are interested in are those induced by
extensions 7 that belong to Ext!((E”, V"), (Es, V3)) and not to the subspace

My ([, [v)) = Tm(A + F)

and we get that

dim Mas([p], [v]) = dim Im(A) + dim Im(F') — dim Ms([u], [v])

where we denote by Ms([u], [v]) the linear space Im(A) N Im(F) C Ma([u], [v]). Asin (6.44]
we get

Hom((E", V"), (Ey, V3)) = 0. (6.59)

If we assume condition (a), then we have that (Qs3, W3) % (Q;, W;) for i = 1,2, therefore

Hom((Qs3, W3), (B2, V2)) = 0, (6.60)
so the map A is injective by (6.33]). If we assume (b), then

HOm((Qg, Wg), (EQ, VQ)) =C. (661)

So in case (b) if we use (6.33)), (6.59) and (6.61) we get that Ker(4) = C. As in lemma
we have that F' is injective and that the space Ms([u], [v]) coincides with the image of
the linear map A + F.

Now let us consider the map M: in case (a) using (6.38]) we get that such a morphism is
injective. In case (b) we get that Hom((Qs, W3), (Q1, W1)) = C. Moreover,

Hom((E", V"), (Q1,W1)) = 0. (6.62)

Indeed, if we have a non-zero morphism in that set, by exactness of we get a non-
zero morphism from (Qs, W3) to (Q1, W1) or from (Q4, Wy) to (Q1,W7). In the first case we
will get a splitting of , while the second case will give an isomorphism from (Q4, Wy) to
(Q1,W1). Both cases are impossible by hypothesis and construction, so the claim is proved.

Using (6.38) and (6.62) we get that in case (b) Ker(M) = C.

Then we need to compute dim Ma([u],[v]). In order to do that, we fix the following
notation:

dim Ext!'((Qq, Wa), (Fa,V3)) :=d, dim Ext'((E", V"), (Q1,W1)) := e,
dim Ext!'((Qq, Wa), (Q1,W1)) := f.

Both in case (a) and (b) the map F' is injective, so dim Im(F') = e. Moreover,
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e in case (a) the map A is injective, so dim Im(A) = d. Moreover, also the map M is
injective and so is F' o M. Since M3s([u], [v]) coincides with the image of F' o M, then
dim Ms([u], [v]) = f;

e in case (b) the kernel of A has dimension 1, so dim Im(A) = d — 1. Moreover, also the
kernel of M has dimension 1. Since F' is injective, then also the kernel of F' o M has
dimension 1. Then dim M;s([u],[v]) = f — 1.

Then both in case (a) and in case (b) we get

dim My([p],[V]) =d+e—f=(d—1)+e—(f—1) (6.63)

The set parametrizing all the (Esq, V2)’s is given by P((Q2, Wa), (Q1, W1)) and analogously,
the set parametrizing all the (E”,V")’s is given by P((Q4, W4), (Q3, W3)). Moreover, for every
(E2,V5) and (E”, V") we have Aut(FE2, Vo) = Aut(E”, V") = C*. Moreover, we have proved

in (6.44) that

Hom((E", V"), (B, Va2)) = 0.

So the induced action on M;([u], [v]) and on M ([u], [v]) ~ Ma([p], [v]) is given by multi-
plication of scalars in C*. So having fixed any pair of points

(lu], [V]) € P(Ext' ((Q2, Wa), (Q1, Wh)) x P(Ext ((Qa, W), (Q3, W3)),

we get that the (E,V)’s with unique a.-Jordan-Hélder filtration are parametrized by

PMi([u], (V) ~ P(Ma(([u], [1]))-
O

Proposition 6.2.4. Let us fir any triple (n,d, k), a critical value o for it and o quadru-
ple (ni, di, ki)i=1,.. 4 compatible with (ac;n,d, k). Let us assume that conditions m, re-
spectively , are satisfied and that for every quadruple (Qi, Wi)i=1,...4 € H?:l G; we
have (Q;,W;) # (Q4,Wy) for i = 1,2,3. Let us denote by G’ the set of all the (E,V)’s
in Gt (ae;n, d, k), respectively in G~ (ag;n, d, k), that have unique a.-Jordan-Hélder filtration
and graded at a. in H?:l G; and such that

(Q1, W) % (Q2, Wa) % (Qs,Ws),  Ext* (Qa, Wa), (Q1,W1)) = 0 = Ezt* (E",V"),(Q1,W1))

where (E", V") is any non-split extension of (Qq,Ws4) by (Qs,W3). Then there exists a fi-
nite family {Rapcde fiji} of schemes for (a,b,c,d,e, f) € N°, and i,3,1 varying in finite
sets (for a,b,c,d,e, f fived), together with injective morphisms to Gt (ae;n,d, k), respectively
to G~ (ag;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Every scheme Ryp cde fi,j1 comes with a triple of morphisms
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Papedefijl : Rapedefijl — Uabedeijl C Rai x R,
PLasi + Ra;i — Ua;i C G1 X Ga,
b T RYI 5 UY G x G,

where:

® Vabedefijl has fibers isomorphic to Pl pdte—f-1 Yazi has fibers isomorphic to
P! and ©¥% has fibers isomorphic to P*~1;

o {Uy.iti is a finite disjoint locally closed covering of

Us = {((Q1, W1),(Q2,W2)) € G1 x G2 s.1.
dim Ext' ((Q2, W2), (Q1,W1)) = a,  Hom((Q2, W2), (Q1,W1)) = 0};

every U, is a locally closed subscheme of G x Ga and so are all the U,;’s. The last
condition on U, can be dropped if (n1,k1) # (na, ko), otherwise it is necessary;

o {U%I}; is a finite disjoint locally closed covering of

U = {((Qs, Wh), (Qu, W) € Gy x Gu s.t. dim But(Qa, Wa), (Qs, Wa)) = b}:

every U is a locally closed subscheme of Gz x G4 and so are all the U%J ’s;

o {(Uspcdefijit is a finite disjoint locally closed covering of

Uspedefij = (B2, Va), (E", V")) € Ray x R¥ s.t. dim Ext*(E", V"), (E2,V2)) = c,
dim Ext'(FUI(E", V"), (B2, Vo)) = d, dim Ext'(E", V"), a.i(Fa, Va)) = e,
dim E’xtl(@b;j (E//7 V//)v @a;i(E27 VQ)) - f7 Hom(ab;j(E//7 Vll)?@a;i(Eév ‘/'2)) - 0}7

where:

— QPa:i 18 the composition of pg.; with the projection to Gi;

— g 18 the composition of @g,; with the projection to Ga;

— @Y% s the composition of ©¥I with the projection to Gs;

— @% s the composition of ©*7 with the projection to Gy.
Every Uapcde,fii,j 15 locally closed in Ry X RY% and so are all the Uab,cde,frijl S
The last condition on Ugpcde i can be dropped if (n1, ki) # (no, k), otherwise it is
necessary.
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Proof. Let us fix any sequence (a, b, c, d, e, f) € N® and let us denote by (QA“ W,) the universal
families over the various Quot schemes G’Z fori =1,---,4. Let us consider the scheme G’g X G’4
and let us denote by p3 and p4 the projections from such a scheme to its factors. Having fixed
b, let us consider the locally closed subscheme of Gs x G4 defined as:

Ub = {t € G5 x Gy s.t. dim Ext!((§}, pa)*(Qa, Wa)t, (By, P3)* (D3, Ws)¢) = b}.

By hypothesis for each ¢ € Gs x G4 we have:

Hom (5}, pa)* (O, Wit (95, P3)* (D3, Wa)s) = 0.

So we can apply corollary and we get that there is a finite disjoint covering {U bij} j
of U by locally closed subschemes; for every j there is a locally free sheaf on U

W = €l (5 5) (Qa W)l (0, 3)" Q3 W)l gy

and a projective bundle

@b;j : Rb;j = ]P)(’I':[b;j) — Ub;j C é3 X é4

with fibers isomorphic to P?~!. By abuse of notation, we denote by ¢/ also the composition
RY — Gs x G4. Moreover, there exists a family (£07, V%) parametrized by R" and a
universal family of classes of non-split extensions over that scheme:

s A A v A ~ bj
b3, pPI)* (ph, P3)*(Qs, Wa) @ gy O e (1)
§bid

6b;j Ab.j Ab'j A/b'j Ab'j wr A A ks A ~
— (EW, V) — (77, @77 ) (Py, Pa)*(Qa, Wa) — 0.

A

0— (¢ (6.64)

Now let us pass to the scheme G1 x G and let us denote by p1, P2 the projections to the
2 factors. The set

~ ~

U, = {t € Gy x Gy s.t. dim Extl((ﬁ’g,ﬁg)*(gz,wz)ta (P, 1)*(Q1, Wh)i) = a,

Hom((p}, p2)*(Qa, Wa)s, (91, 1) (Q1,Wh)y) = 0}
is a locally closed subscheme of G1 x Go. By corollary there exists a finite disjoint

~

covering of Ua by locally closed subschemes Ua;i; on each Uy there is a locally free sheaf
Hesi := &Et}rﬁ ) ((Q2, W), (Q1,W1))"

and a projective bundle

@a;i : Ra;i = ]P)(?'za;i) — ﬁa;i C él X ég
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with fibers isomorphic to P*~!. By abuse of notation we denote by Pa;i also the composition
R,; — G1 x Go. Moreover, there exists a family (&4, V,,i) parametrized by Rg; and a
universal family of non-split extensions over that scheme:

Tasi

0 = (G Past) " (B D1 (Qu. W) ©p O (1) =5

a;t

(6.65)

Raji

@) ((éa;iaf}a;i) — (Sbfz;b@a;i)*(ﬁé’ﬁQ)*(Q27W2> — 0.

Now for every choice of indices (i, j) we consider the scheme T := Ra;i x RV together with
the projections p12 and ps4 to the 2 factors. Then we define U’a’b,c’d,e,fﬂ;j as the subscheme of
T:

{t € T s.t. dim Ext!((phy, p3a)* (%7, V09),, (Pha, 12)* (Easis fﬁa;i)t) =c,
dim Ext' (944, p34)" (8", &%) (), 54)"(Qa, Wat, (Brzs r2)” (Easiy Vai)e) = d,
dim Ext" (944, P30)" (E% V)1, (B, Pr2)* (Blasss Past) (51, 51)* (Q1, Wi )e) = e,
dim Ext! (e, P3a)" (8", 6" (Bl a)" (Qu, Wi,
(P12, P12)" (Blasis Bast) " (P, 1) (Q1, W)y) = f
Hom (s, paa)" (", 6"9)" (B, 53)" (3, W),
(Pras P12)" (Plsis Pazi) (P, 2)* (Q2, Wa)y) = 0}.
By proposition , this is a locally closed subscheme of Ra;i x RV By construction, for
each t € Uypcdefij, we have that both (9o, p12)*(Easis Vasi)e and (g, P3a)*(E29, V09), are
Qc-semistable. As in , we have:

Hom (P, P3a)* (%, V09),, (B9, D12)* (Easiy Vasi)t) = 0

for all t € Uy p,c.dpe, 1,5 Moreover, by construction

dim Ext!((phy, p3a)* (%, V), (Bla, P12)* (Easis Vasi)t) = ¢

is constant on Ua,b,c,d,e,f;z‘,j~ Then we can apply proposition for such a scheme and we
get that there is a finite disjoint locally closed covering {Ufllbcde f'ij}ll of ﬁa,b,c,d,e,f;i,j- For
each [; there is a locally free sheaf on the corresponding scheme:

V
1 1 ~ ~ 5b;5 Yabsg A~ ~ 5
Hal,b7c,d767f;z‘,j = g‘/L‘tﬂ'All ((p§4,p34)*(5 ,J7 V ,J)a (p/127p12)*(5a;i7 Va;i))

U o
a,b,c,d,e, fii,j

and a vector bundle of rank c:

alq . vl L 7l rla
Pavedefi Vavedesij = ¥ Hapedefig) = Uabedefii

. . All All
together with a family (€, cqc i Vapede i

there is a universal family of extensions over that scheme given by:

. 7l
) parametrized by Va,b,c,d,e,f;i,j' Moreover,
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h

/l N N 5 9 La.,b,c,d,e,f;i,'

0— (Spabcd&fw’gpabcd,eyf w) (p,127p12)*(5a§iﬂvavi) =
leb c,d,e, f;i,j Sll Vll Alal,bycvdyeyf;iyj 6.66
" Cavedeig Yabedefi) (6.66)

Alc:,l,b,c,d,e,f;i,j ~ ll A/ N %/ Ob Yybii
— (Qpabcdef,z,]’spabcdef,z,]) (p347p34> (8 ’J7V J) — 0.

Now let us consider the pullback of the sequence (6.64)) via the morphism U lb cdefig

Ra;i x R P34 Rbi (we denote again by ps4 this morphism) and let us apply to the new exact
sequence the functor

/HomﬂAll <_> (13/1271512)*(éa;ia]>a;i)>-

U -
a,b,c,d,e, f3i,]j

Then we get a long exact sequence:

Homa ((BhasB3a)* (2", 87" (B, 5)" (3. W) s O s (1)), Bz, 12)* Eais Vi) ) —

U .
a,b,c,d,e, f;i,j

A A~ ~'b;j ) \ D p 3 y -
- g$t71r011 ((p§4,1734)*(80 P9, M) (), pa)” (Q4,W4)a(Piz;p12)*(5a;i’v‘“i)) —
a,b,c,d,e, f;i,j
A 5 cb3 YY) (Plg, P 3
RGN Ext}pzl <(P§4ap34)*((5b’7avb’j)v (p,127p12)*(5“?i’va;i)> A

Ya,b,e,de, f3i,d

Let us consider the first sheaf in that exact sequence. If we use (6.60)) and (6.61))), for each
pair ((Q3, W3), (B2, V5)) we get that either Hom((Qs, W3), (E2, V2)) = 0 or dim Hom((Qs3, W3),
(E2,V3)) = 1, according to the relation between (Q1,W1) and (Q3, W3). Then there exists a
disjoint covering of U&b’c’d,e’fmj by locally closed subschemes indexed by ls € {0,1}, so that

the sheaf we are considering is locally free if restricted to any such subscheme. In particular,
it is the zero sheaf for lo = 0 and it is a line bundle if [ = 1. Moreover, by definition of
ﬁa,b,cyd,& :i,j also the second sheaf of the previous sequence is locally free if restricted to any
such subscheme.

Analogously, let us consider the following long exact sequence obtained by applying the
functor

HomWAll <(ﬁ£}47]§34)*(£b;j7f}b;j)7 _>

Va,b,e,de, i,

N

to the pullback of (6.65) via the morphism ULy . ;. r; - < Ray X R% 2% R,

s Homﬂ'hll ((ﬁ/347ﬁ34)*(gb;j7 Vb;j)a (ﬁ&Z)ﬁlZ)*(gﬁIa;ia @a;i)*(ﬁé>ﬁ2)*(g27 WQ)) —

Yab,e,d,e, 3,

- gmt}nll <(ﬁg4vﬁ34)*(é‘b;jvvb;j)a
Ua,b,c,d,e,f;i,j
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~ ~ *( A ~ YN A A F
(hos B12)" (Pasis Bast) (51, 21)* (1, W) @, Opp (1))

H Ext}TUk A ((ﬁg47ﬁ34)*(€b’ja f}b;j% (13/1271512)*(éa;i7 Va;i)) o

a,b, cd se,fit,]

Using base change together with (6.46)), we get that the first sheaf is zero. Moreover,
having fixed the invariant e, the second sheaf of this exact sequence is locally free of rank e.

Let us denote by [ any collection of indices (I1,l2). By construction [ varies over a finite set,
80 we get a finite disjoint locally closed covering {Ua bede fiid. 1} of Uabcdefw According
to this notation, we denote by Va boed,e, il (Ea bye,doe, il Va7b7c7d7e7fm,l) etc. all the various
objects we have defined so far.

Moreover, by restricting to any subscheme Uy p ¢ de. fii.5,1, We Tewrite the previous 2 exact
sequences as sequences of morphisms of vector bundles as follows:

A
O%Vbcdefz,jl Evbcdefz,jl Vfledefﬂ:]l

and

0= V2 caegigs — Vabede fiii

If I = (Iy,l2,13,14,15) is such that I = 0, then V3 abedefijl = 0, 50 we get that A
is injective; if Iy = 1, then Ker(A) = abcdef‘ijl is a line bundle. In both cases, the
computations of lemma prove that the induced morphism of vector bundles

Y71 r2 9
A+ F: Va,b,c,d,e,f;i,j,l S Va,b,c,d,e,f;i,j,l Va,b,c,d,e,f;i7j7l

has constant rank (equal to d+ e — f), so its image is a subvector bundle of f/a besdse, fil (see
for example, [LP2, proposition 1.7.2]). We denote such a vector bundle by V/ abede. il and
we write

) . .
Qab,cde fiijl = Vapbede friil ™ Vapede, fiil

Then we get an obvious action of C* on both Vmb’c’d’e’fﬂ’],l and V/ wbedef: Such an

.0,
action is compatible with the fibration to Ugp.cde,fij0- S0 it makes sense to consider the
quotient

A *
Rapede,fiijl = Qapedefiiji/C
and the induced fibration

Pabcdefiigl * Rapede fiigl = Uabede fiil-

The fibers of such a fibration are described in lemma [6.2.3] so each fiber is isomorphic to
Pe—1Pdte—f=1 Now we recall that on Qa,b,c,d,e,f;i,j we have a family (éa,b,c,d,e,f;i,j,l; Va7b,c7d7e7f;i,j,l)
(given by restriction of the central term of (6.66)) such that if we denote by ¢ any point of
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Qa,b,c,d,e,ﬁml and by (E, V) the restriction of such a family to ¢, then we have a triple of exact
sequences:

0— (Ql?WI) — (E27‘/2) — (Ql,Wl) — 07
0— (Q37W3) — (Ella V//) — (Q47W4) — 07
0— (B, Vo) = (E,V) = (E",V") =0

such that both the first 2 sequences and the induced sequence

0 — (Q2,W2) — (E3,V3)/(Q1,W1) = (Q3,W3) = 0

are non-split. Then by lemma we have that (E,V) has a unique a.-JHF. Now let us
assume conditions (6.24]) (an analogous proof holds for conditions (6.25))). Then (E, V') belongs
to

G' C G (ag;n,d, k) C G(af;n,d, k).

Then by the universal property of the scheme G(a;n, d, k) we get that the previous family
induces a morphism

wabcdef,,jl Qabcde,fz,jl_)G(a ndk)

By construction, we have that &, p ¢ d.e, i, 18 invariant under the action of C*, so it induces
) a,b,c.dse,fi,5, )
a morphism

wa,b,c,d,e,f;i,j,l Ra ,boe,de, fii,7,0 — G(a 31, d k)

Finally, there are free actions as follows.

e PGL(N;) x PGL(N3) acts on Gy x Gz, Ua;i and Ra;i; this induces a projective fibration

Pasi - Ra;i — Ua;i

with fibers isomorphic to P!, The family {U,;}; is a finite disjoint locally closed
covering of the subscheme U, C G1 X G2 described in the claim of the proposition.

e PGL(N3)x PGL(Ny) acts on Gy x Gy, U% and RYJ; this induces a projective fibration

LR L p— L)

with fibers isomorphic to P’~1. The family {U%/}; is a finite disjoint locally closed
covering of the subscheme U, C G3 x G4 described in the claim of the proposition.
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o PGL(Ny) x PGL(Ns) x PGL(N3) x PGL(Ny) acts on Ry x R, Uy pede gl and
R%b,c’d,e,f;i’jyl; this induces a fibration

Pabcdefrigl - Rapedefigl — Uabede,fiiji

with fibers isomorphic to P!\ P4te=f=1 The family {Uapc.de,f:ij1 11 is a finite disjoint
locally closed covering of the subscheme Uy, p ¢ de. f:ij C Rasi ¥ RYJ described in the claim
of the proposition.

The morphism Wy p ¢ d.e,f:i,5, 18 invariant under the action on R p cd.e, f:i,5,1, S0 there is an
induced morphism

. +.
Wa,b,cde, fiigd * Rabede fiigl — Glag in, d, k).

Such a morphism is injective (and has values in G’) because of the lemma SO we
conclude.
0

Lemma 6.2.5. Let us fix any quadruple (Q;, W;)i=1,.. 4 € H;l:l G, and let us assume that

(Q2, W2) 2 (Q3,W3) ~ (Qq, Wy), (Q1,W1) # (Qi, Wi) Vi=234,
E$t2 ((Q47 W4), (Q17 Wl)) =0= E:Ct2 (<Q47 W4)7 <E27 VQ)) )

where (B2, Va) is any non-split extension of (Q2, Wa) by (Q1,W1). Let us denote by p any
class of a non-split extension of the form

0 = (Q1, W1) —= (Ea, Va) — (Q2, W) =+ 0 (6.67)

and by v any class of a non-split extension of the form

K

0— (Q3,W3) -5 (E", V") =5 (Qu, Ws) — 0. (6.68)

Hawing fired [p] € P(Ext' ((Qa, W), (Q1,W1))) and [v] € P(Ext' (Qsz, W3), (Q4, Wy))), let
us consider the space My([u], [V]) := Ext'(E", V"), (Ea,V3)), let us denote by n any object in
that space and let us choose a representative of n as follows:

0= (B, Vo) = (B, V) =25 (E", V") — 0. (6.69)

Then let us consider the action of C x C* on Mi([u], [v]) given as follows. For every pair

of scalars (§,7) and for every class n of an extension we set (§,7)-n:=n" wheren' is
represented by

0 = (Es, Vo) - (E,V) &5 (5" vy 0, (6.70)

where \(§,7) := (§- 00k + T idgnyn) o\ Let us denote by Ma([u], [v]) the image of the
linear map A + F where A and F are the maps induced by (0.68) and (0.67) respectively, as
follows:
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A But' ((Qa, Wa), (B2, V2)) — Ext' (B", V"), (B2, Va)) = My([ul, [V]),
F: Ext'(E", V"), (Q1,W1)) — Ext'((E", V"), (E2,V3)) = My([u], [v]).

Let us write M ([u], [v]) := Mi([u], [v])~Ma([p], [v]). The previous action sends Ma([u], [v])
to itself, so it makes sense to consider M ([u], [V]) := M([u], [v])/(C x C*). Then the objects
(E,V)’s with unique a.-Jordan-Hdélder filtration and graded @?zl(Qi, W;) are parametrized by
triples ([u], [V], [n]), where:

e (1] € P(Ext ((Qa, W), (Q1,W1))) and p has a representative of the form ;
o [V] € P(EBxt' ((Qq, W4), (Q3,W3))) and v has a representative of the form ;

o [n] € M([u], [V]).

Moreover, if we write:

c:=dim Mi([u],[v]), d:= dim Ext'((Qq, W), (Fa, V3)),
e := dim Ext'((E",V'"),(Q1,W1)), f:= dim Ext'((Q4, Wa), (Q1,W1)),

then dim My([u], [V]) = d+e — f and M([u], [v]) ~ CI~1 x (Pe—d¢=1 Pe—F—1),

Proof. The proof is on the same line of the proof of lemma and we refer to that proof
for most of the time. In particular, we still have that

Hom((E", V"), (F2,V3)) = 0 = Hom((Q4, W4), (Ea, V5)). (6.71)

Also in this case we get that the morphisms A, F', M and L are all injective. Moreover,
Ms([p], [v]) =Im(Ao L) =Im(F o M). Then we have that

dim Ms([p], [v]) =d+e— f. (6.72)

As in lemma for all triples (u,v,n) as before with p,v # 0 and n € M([u],[v]) =
Mi([p], [v]) ~ Ma([p], [v]), we have that the induced (E,V') has unique Jordan-Holder filtra-
tion at a. and graded @} ,(Q;, W;). The set parametrizing all the (Fa,V2)’s is given by
P(Ext!((Qq, W2), (Q1,W1))) and analogously, the set parametrizing all the (E”,V")’s is in bi-
jection with P(Ext((Q4, W4), (Q3,W3))). Moreover, for every (Fa, Va) and (E”, V") in those
2 spaces, we have that Aut(Es, V2) = C* and Aut(E”, V") = C x C*.

So we have an induced action of C x C* on M ([u], [v]) as follows

Cx C* x My([u],[v]) — Mi(yl,[v])
&mmn) — n§r),
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where 7(&, 7) has a representative of the form

0= (Bs, Vo) - (E,V) &3 (B, V") S50

where A(§,7) := (§- 00k +7-idgn yn)) o A. Now we have that Ma([u], [v]) is sent to itself by
such an action. The method for proving this is analogous to the one used in the same point in
lemmal6.2.1] so we omit the details. So we have that Cx C* acts on M ([u], [v]) = M ([¢], [v])~
M ([p], [v]). Moreover, we can also prove easily that (Cx C*)(Im(A)) C Im(A) € Ma([u], [V]).
Therefore, such a group acts also on the subsets

M’ = My ([, V) ~ Tm(A), M = Ma([u, [V]) ~ Tm(4).

By construction we have:

M ([, 7)) = Mi([4], ) ~ Ma(([u, [V]) = M’ ~ M.

Now let us consider the exact sequence (6.33). We have already proved in (6.76) that
Hom((Qs, W3), (E2,V2)) = 0. Moreover, by hypothesis

Ext?((Qq, Wa), (B2, V2)) = 0.

Since (Q3, W3) ~ (Q4, Wy), then (6.33)) gives a short exact sequence as follows.

0 — Ext'((Q3, W3), (B2, Va)) A Ext'((E", V"), (B2, Va)) — Ext*((Q3, W3), (Fa, Va)) — 0.

So we have a (non-canonical) isomorphism

M’ = My([p], [V]) ~ Im(A) ~

~ Ext'((Q3, Wa), (B2, V2)) x (Ext'((Qs, Wa), (B2, V2)) ~ {0}).

Under this isomorphism the action of C x C* on M’ is given for every pair of scalars (£, 7)
and for every (ny1,m2) € M" as (§,7) - (n1,m2) = (7-m,7-n2+&-m). Now:

M ~C°\ Cl=C? x (C4~ {0}),
M" ~Cctel L cd =t x (C < {0}).

Then:

M([p], [V]) = M([u], [v])/(C x C*) = (H'\ H")/(C x C*) =
_ (Cdfl % Pcfdfl) N ((Cdfl % Pefffl)'

So we conclude. O
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Proposition 6.2.6. Let us fix any triple (n,d, k), a critical value o for it and any quadruple
(ng, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that conditions m, respec-
tively (6.25)), are satisfied. Moreover, let us suppose that (ns, ks) = (na, k). Let us denote
by G' the set of all the (E,V)’s in GT(ae;n,d, k), respectively in G~ (ae;n, d, k), that have
unique ae-Jordan-Holder filtration at o and graded given by &%, (Q:, W;) such that

(Q2,W2) £ (Q3,W3) = (Qa, Wy), (Q1,W1) £ (Qi,Wi) Vi=2,3,
Eut? ((Q47 W4), (Q17 Wl)) =0 = Ext’ (<Q47 W4)7 <E2ﬂ VQ)) )
where (Eq,Va) is any non-split extension of (Q2, Wa) by (Q1, Wh).

(Q1, W) @ (Q2, W2) ® (@3, W3) ® (Q3, W3).

and i, 7,1 varying in finite sets (for a,b,c,d,e, f fized), together with injective morphisms to
Gt (ag;n,d, k), respectively to G~ (ae;n, d, k), such that the images form a disjoint covering of
G’ by locally closed subschemes. Every scheme Ropcde, 5,0 comes with a triple of morphisms

. b; ;

Papedefigl * Rapedefigl — Uabede fiji C Razi X B,
Pasi - Ra;i — Ua;i C G1 X Ga,
OV R U% C G3 =Gy

where:

® Vabedefigl has fibers isomorphic to C4=1x (P47 INP~/=1) . has fibers isomorphic
to P 1 and cpr has fibers isomorphic to IP’bil;

e {Ugyi}i is a finite disjoint locally closed covering of

U = {((Q1, W1), (Q2, Wh)) € Gy x Gy s.t. dim Ext'((Qz, Wa), (Q1, W1)) = a};

every U, is a locally closed subscheme of G1 x Ga and so are all the Uy;’s;

o {U%I}; is a finite disjoint locally closed covering of

U" = {(Qs,W3) € G3 s.t. dim Eat'((Q3, W3), (Qs, W3)) = b};
every UP is a locally closed subscheme of G3 and so are all the UY%J ’s;

o {Uspedefijlti is a finite disjoint locally closed covering of

Ua,b,c,d,e,f;i,j = {((EQ, VQ), (E//, V”)) S Ra;i X Rb;j s.t. dim E:Ctl((E”, V”), (EQ, VQ)) =C,
dim Ext* (%I (E", V"), (B2, Vo)) = d, dim Ext'(E", V"), a.i(Fa2, V2)) = e,
dim Extl(gpb;j(E”? V”)a &a;i(E% ‘/2)) = f7 (Sob;j(E”7 V”) ;£ @a;i(E% VQ))}7 (673)
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where Pq;; 15 the composition of @q; with the projection to Gy and @, is the composition
of pa;i with the projection to Ga. Every Ugpcde,fi; 15 locally closed in R, X RY and
so are all the Uy pcde, fi5,’s. The last condition of can be omitted if (ng, ko) #

sy Gy Wy

(ng, k3) = (ng, kq); it is necessary if (no, ko) = (n3, k3) = (n4, kq).

Proof. The proof is completely analogous to the one of proposition using the results of
lemma, instead of lemma O

Lemma 6.2.7. Let us fix any quadruple (Q;, W;)i=1,.. 4 € H?:l G; and let us assume that

(Q2,Wa) # (Q3,W3) 2 (Qa, Wa), (Q1,Wh) #(Qi,W;) Yi=2,34,
Ext? ((Qa, Wa), (Q1, W1)) = 0 = Ext? (Qa, W), (Fa, V2)),

where (Ea,Va) is any non-split extension of (Q2, Wa) by (Q1,W1). Let us denote by u any
class of a non-split extension of the form

19
0— (Qlu Wl) L> (E27 VYQ) — (QQa WQ) —0 (674)
and by v any class of a non-split extension of the form

K

0= (Q3, W3) == (B", V") == (Qa, W) — 0. (6.75)

Then let us consider the space My ([u], [V]) := Bzt ((E", V"), (B2, V2)) and let us denote by
Ms([p], [v]) the image of the linear map A+ F where A and F are the maps induced by

and respectively, as follows:

A EIH((Q% W4)7 (E27 VQ)) — Extl((Eﬂﬂ V”)v (E27 VQ)) = Ml([/J’L [V])v
F: E’Z‘tl((E”, V”)a (Qh Wl)) — Extl((Ella V”)7 (E27 VQ)) = Ml([u]? [V])

Then the objects (E,V)’s with unique ca.-Jordan-Holder filtration and graded ®}_,(Q;, W;)
are parametrized by triples ([u], [V],[n]), where:

o (1] € P(Ext' ((Q2, Wa), (Q1,W1))) and u has a representative of the form ;
e [V] € P(Ext'((Qq, W4), (Q3,W3))) and v has a representative of the form ;

o [n] € M([u), [v]) € P(My([p], n])) ~ P(Ma([u], [v])).

Moreover, if we write:

c:=dim Mi([u],[v]), d:= dim Ext'((Qu, W), (Fa, V3)),
e := dim Ext'((E",V'"),(Q1,W1)), f = dim Bxt'((Q4, Wa), (Q1,W1)),

then dim Ma([u], [V]) = d+ e — f and P(M;([u], [v])) ~ P(Mz([u], [v])) ~ P L < pd+e—f—1
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Proof. The proof is analogous to the proof of lemma In this lemma we need to consider
2 subcases as follows:

(c) Hom ((Q4, Wy), (Q2,W2)) = 0;
(d) Hom ((Q4, W), (Q2, W2)) = C.

Since (Q2,Ws) and (Q4, Wy) are both a.-stable of the same slope, these are the only 2
possibilities. Using the hypotheses of this lemma, these conditions can be restated as:

(c) (Q2,W2) # (Q3, Ws) # (Qa, W4) and (Q2, W2) 2 (Qa, Wa);
(d) (Q2,W2) # (Q3, Ws) # (Qa, Wu) and (Q2, W2) =~ (Qa, Wa).

Then in this case the roles of A and F' are reversed with respect to the proof of lemma
6.2.3] To be more precise, with the same ideas of that lemma one can prove the following
facts.

In (6.33) we have that:

Hom((Q3, W3), (B2, V2)) = 0. (6.76)
Therefore A is always injective, so dim Im(A) = d.

e [ is injective in case (c¢) and has a 1-dimensional kernel in case (d), so dim Im(F) is
equal to e or e — 1 according to the 2 cases;

Ms([u], [v]) again coincides with Im(Ao L) = Im(F o M). In this case using the sequence
we get that L is injective in case (c¢) and has a 1-dimensional kernel in case (d).
Since A is injective, then dim Ms([u], [v]) = dim Im(A o L) is equal to f or to f —1
according to the 2 cases.

Then both in case (¢) and in case (d) we get that

dim Ms([p],[v])) =d+e—f=d+(e—1)—(f—1). (6.77)
Then the proof is on the same line of the proof of lemma [6.2.3] so we omit it. O

Proposition 6.2.8. Let us fir any triple (n,d, k), a critical value o for it and a quadru-
ple (ni, d;, k;)i=1,.. 4 compatible with (ac;n,d, k). Let us assume that conditions m, Te-
spectively (6.25)), are satisfied and that for every quadruple (Q;, W;)i=1,..4 € H?:l G; we
have (Q1,W1) # (Qi, Ws) for i = 2,3,4. Let us denote by G’ the set of all the (E,V)’s in
Gt (ae;n, d, k), respectively in G~ (ae;n,d, k), that have unique a.-Jordan-Hdélder filtration at
ac and graded in H?Zl G, such that:

(Q2, W2) # (Q3,W3) 2 (Qu, Wa),  Eat* (Qa, Wa), (Q1, W1)) = 0 = Bzt (Qa, Wa), (B2, V2)),
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where (Ea,Va) is any non-split extension of (Q2,W2) by (Q1,Wh1). Then there exists a fi-
nite family {Raopcde fiji} of schemes for (a,b,c,d,e, f) € N°, and i,4,1 varying in finite
sets (for a,b,c,d,e, f fived), together with injective morphisms to Gt (ae;n,d, k), respectively
to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Every scheme Rypcde, fi,51 comes with a triple of morphisms

. b. y

soa)bac?dae’f;iujvl : Ravbzcvdzemf;iujvl Uaubvcvd7euf:i)j’l - Ra7l X R 7]7
Casi : Ra:i — Ug:i C G1 X G,
" RY — UY € G3 x Gy

where:

® Vabedefijl has fibers isomorphic to P N Pdte=f=1" .. has fibers isomorphic to
P! and ©¥% has fibers isomorphic to P*~1;

o {Ugyi}i is a finite disjoint locally closed covering of

Ua = {((Ql,Wl), (QQ,WQ)) S Gl X G2 s.t. dim E’Z‘tl((QQ,WQ), (Ql,Wl)) == CL};

every U, is a locally closed subscheme of G1 x G2 and so are all the Ug;’s.

o {U%I}; is a finite disjoint locally closed covering of

Ub .= {((Qg, Wg), (Q4, W4)) € G3 x G4 s.t.
dim Ext'((Qa, Wa), (Q3,W3)) = b, (Q3,W3) % (Qu, Wa)};

every U is a locally closed subscheme of Gy x G4 and so are all the U ’s. The last
condition on UP can be dropped if (n3, k3) # (n4, ka), otherwise it is necessary;

o {(Uspcdefijit is a finite disjoint locally closed covering of

Uabede fig = L((Ea, Va), (B", V")) € Rayi x R¥ s.t. dim Ext'((E", V"), (E2,Va)) = ¢,
dim Ext*(§UI(E", V"), (B2, Vo)) = d, dim Ext'(E", V"), a.i(Fa, Va)) = e,
dim Ext' (§"I(E", V"), Gasi(Ea, Va2)) = [, @"(E", V") # By (E2,V2)},

where

— Qa:i 18 the composition of pg.; with the projection to G1;
— g 15 the composilion of @a,; with the projection to Ga;

— @Y% is the composition of ©* with the projection to Gs;



6.2 Jordan-Hélder filtration of length 4 115

— @Y% s the composition of ©*7 with the projection to Gy.

Every Uapcde,fii,j 15 locally closed in Rg; X RY% and so are all the Uab,cde,frijl S
The last condition on Ugpcde fii; can be dropped if (no, ka) # (ns3, k3), otherwise it is
necessary.

Proof. The proof is analogous to the proof of proposition We simply use lemma [6.2.9
instead of lemma [6.2.3] O

Remark 6.2.2. Let us suppose that all the following conditions are satisfied:

(Q1,W1) £ (Q;, W;) for all i = 2,3, 4;
(Qa, Wy) # (Q;, W;) for all i = 2, 3;
Ext®((Q4, Wy), (Q1,W1)) =0

Ext?((Q4, Wa), (Fa,V2)) = 0 for all non-split extensions (E2, Vz) of (Q2, Wa) by (Q1, W1);

Ext?((E",V"),(Q1,W1)) = 0 for all non-split extensions (E”, V") of (Q4, W) by (Q3, W3).

Then we can apply both proposition and proposition [6.2.8] and the 2 descriptions
give rise to the same Hodge-Deligne polynomials, as they should do.

Remark 6.2.3. When the JHF is unique and has length equal to 4 there are still 4 subcases that
we are not able to describe completely. These are in bijection with the subcases described in
lemmas [6.2.1] [6.2.3], [6.2.5] and [6.2.7] with the only significant difference that in these subcases
(Q2, Ws) ~ (Q3,W3) instead of (Q2, W3) # (Q3, W3). To be more precise, the 4 subcases we
still have to describe completely are as follows:

(Q1, W1) =~ (Q2,Wa) =~ (Q3,W3), (Q4, W) % (Q;,W;) Vi=1,2,3,

(Q1, W) % (Q2,Wa) ~ (Q3,W3), (Q4,Wy) #£(Q:,W;) Vi=1,2,3,

(Q2, W2) =~ (Q3,W3) =~ (Q4, Wy), (Q1,W1) % (Qi,Wi) Vi=2,3,4,
) = ( )

(Q2, Wo Q3, W3) % (Qs, W), (Q1,W1) #£(Qi,W;) Vi=2,3,4.

12

The point where the previous computations fail is where we need to prove that the mor-
phisms of the form v = ¢ o ¢’ are not injective. Actually, in any of the previous cases such
morphisms can actually be isomorphisms, so our construction does not work. In particular,
in any of the previous 4 cases a direct computation shows that this implies that the space
Ms3([p], [v]) contains strictly the space Mj([u], [v]), therefore it is not currently possible to
compute the dimensions of Ms3([u], [v]) and of Ma([u], [v]).






Chapter 7

Parametrization of coherent systems

with non-unique Jordan-Holder
filtration

In this chapter we summarize the parametrizations for those coherent systems (E, V') that
belong to GT(ae;n,d, k) or to G~ (ae;n,d, k) and that have non-unique «.-Jordan-Holder
filtration of length 3 or 4. For the proof of each result, see part II of this work.

7.1 Canonical filtration of type (1,2)

Proposition 7.1.1. Let us fiz any triple (n,d, k), a critical value o, for it and a triple
(g, di, ki)i=12,3 compatible with (ac;n,d, k). Let us assume that (ng, ko) # (n3, k3) and that

ki k )
—>— Vi=23, (7.1)
n; n

respectively that
ki k )
— < = VYi=23, (7.2)
n; n

Let us denote by G’ the set of all the (E,V)’s in GT (ag;n, d, k), respectively in G~ (ae;n, d, k),
such that

(i) they have graded at o given by @g’:l(Qi, W;) of type (ni, di, ki)i=1,2,3;
(1) their ac-canonical filtration is of type (1,2).

Then there is a finite family {Rapij} of schemes for (a,b) € N and i,j varying in finite
sets (for a,b fized), together with injective morphisms to GT (ae;n, d, k), respectively to G~ (a..),
such that the images form a disjoint covering of G' by locally closed subschemes. Every scheme

Rgpi; comes with a sequence of 2 projective fibrations:

117
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1 P2
Rapij — Aapsij — Uabii;

such that:
e ¢ has fibers isomorphic to P'~1, while ¢o has fibers isomorphic to P¢~1;

e cvery Uy . j 15 the fiber product of Ug

N2

and U,f’,j over G, where {Uf,,}z is a locally closed
disjoint covering of

U2 := {((Q1,W1), (Q2, W) € G1 x Gy s.t. dim Ext'((Q2, W2), (Q1,W1)) = a}

and analogously for Ug’.j C G1 x G3. In particular, {Ugpi;}api; s a disjoint covering
of G1 X G2 x G3 by locally closed subschemes.

Proposition 7.1.2. Let us fiz any triple (n,d, k), a critical value o, for it and a triple
(n, di, ki)i=12.3 compatible with (ac;n,d, k). Let us assume that conditions , respectively
, are satisfied. Moreover, let us suppose that (na, ko) = (ns, ks). Let us denote by G’ the
set of all the (E,V)’s in GT(ae;n, d, k), respectively in G~ (ag;n,d, k) such that

(i) they have graded at a. given by EB?Zl(QZ-, W;) of type (ni, di, ki)i=12,3;

(ir) (Q2,W2) # (Q3, W3);
(#ii) their a.-canonical filtration is of type (1,2).

Then there is a finite family of schemes as follows:

(a) R' = R i for every a <b e Ny and (i,7) € L2 x L2;
(b)) R? = Rava?ivj‘GlX(G2><GS\AQB)\Ua,a;i,ija,a;j,i for every a € Ng and i < j € L2;
(c) R? = (Ra,a;i,j|G1x(Ggng\Agg)mUa,a;i,ija,a;j,i)/Z2 Jor every a € Ng and i < j € Lgi
(d) R* = (Raa:iilcy x (Gox Gy~ o3)) /L2 for every a € Ng and i € L2;

where all the schemes of the form R,y ; are obtained exactly as in proposition to-
gether with the same pairs of projective fibrations to the corresponding base U,y ;. Each
scheme of type (a)-(d) comes with an injective morphism to G*(ag;n,d, k), respectively to
G~ (ae;n, d, k), such that the images form a disjoint locally closed covering of G'.

The last 2 types of schemes come together with actions of Zs on the base space and on the
fibers (compatible with the projective fibrations) as follows

o (Qi,Wi)i=123 = (Qi, Wi)i=1,32 for every point of Uy g j;
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o (uz.ps) > (o piz) for every point (2, ps) in the fiber over a triple (Q, Wi)imy 25 €
Ua7a;ivj :

Moreover, for every scheme R of type (c¢) and (d) there exists a finite disjoint covering of
its base space in G1 X Ga x G3 by locally closed subschemes T} that are invariant under the
action of Zo on G1 X G x G3; in addition, there exist trivializations of the fibrations from R
to Ua,a;i,j

Rl = Tp x o1 x pat
that are compatible with the natural action of Zo on T; x P~ x Pe—1,

Proposition 7.1.3. Let us fiz any triple (n,d, k), a critical value o, for it and a triple
(g, di, ki)i=1,2.3 compatible with (ac;n,d, k). Let us assume that conditions , respectively
(7.2), are satisfied. Moreover, let us assume that (ns, ko) = (n3, ks). Let us denote by G the
set of the (E,V)’s in GT(ae;n, d, k), respectively in G~ (ae;n, d, k), such that:

(i) they have graded at o, given by @3_1(Q:, W;) of type (ni, di, ki)i=12.3;
(i) (Q2, Wa) ~ (Q3, W3);
(#ii) their a.-canonical filtration is of type (1,2).

Then there is a finite family {R2.q; = Grass(2,Rqi)} for a € N and i varying in a
finite set (for a fized), together with injective morphisms to Gt (ag;n,d, k), respectively to
G~ (ag;n,d, k), such that the images form a disjoint locally closed covering of G'. Here each
Rq.i is a vector bundle over Ug; with fibers isomorphic to C* and {Uq;}i is a locally closed
disjoint covering of

Ua := {((Q1, W1), (Q2, W2)) € G1 x Go s.t dim Ext' ((Qa, W2), (Q1,W1)) = a}.

7.2 Canonical filtration of type (2,1)

Proposition 7.2.1. Let us fix any triple (n,d, k) a critical value a. for it and a triple
(ng, di, ki)i=12.3 compatible with (ac;n,d, k). Let us assume that

ki k )
— <= Vi=1,2. (7.3)
4 n
respectively that
ki k
—>— Vi=1,2 (7.4)
n; n

Moreover, let us suppose that (n1,k1) # (n2,ke). Then let us denote by G’ the set of all
the (E,V)’s in G*(ag;n,d, k), respectively in G~ (ae;n, d, k), such that



120 7. Parametrization of coherent systems with non-unique Jordan-Hélder filtration

(i) they have graded at o given by ®3_,(Q;, W;) of type (ni, di, ki)i=1,2,3;
(ii) their ae-canonical filtration is of type (2,1).

Then there is a finite family of schemes {Rapi;} for (a,b) € N? and i,j varying in
finite sets (for a,b fized), together with injective morphisms to Gt (ae;n,d, k), respectively to
G~ (ac;n, d, k), such that the images form a disjoint locally closed covering of G'. Every R p.; ;
comes with a sequence of 2 projective filtrations

Rapii;j A, Aa b Lz, Uabsigs
such that:

e &1 has fibers isomorphic to PP~1, while ¢o has fibers isomorphic to P¢~1;

e cvery Uy ; 45 the fiber product of Ualn- and UbQ,j over (g, where {Ujl}z 1 a disjoint
locally closed covering of

Us == {((Q1,W1),(Qs,W3)) € G1 x G3 s.t. dim Ext'((Qs, W3),(Q1,W1)) = a}

and analogously for Ub2;j C G5 x Gjs.

Proposition 7.2.2. Let us fiz any triple (n,d, k), a critical value «. for it and a triple
(ni, di, ki)i=1,23 compatible with (ce;n,d, k). Let us suppose that conditions , respec-
tively are satisfied. Moreover, let us assume that (ni, k1) = (na, ko). Let us denote by
G’ the set of all the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that

(i) they have graded at o, given by @3_1(Q:, Ws) of type (ni, di, ki)i=123;

(ir) (Q1, W) # (Q2, W2),
(1) their ac-canonical filtration is of type (2,1).

Then there is a finite family of schemes as follows:

(a) R' = Ry ; for every a <b € Ny and (i,j) € L, x L?;
() R? = Raa:ijl(G1x G A19) % CsUn.ais jUaray.s JOT €vETYy 0 € No and i < j € Ly;
(c) R? = (Ra,a5i,|(G1 x Ga~ A12) XG5V aii jUavaiji )/ L2 Jor every a € No and i < j € L;
(d) R* = (Raa;i,il(GyxGa~ 1) Gy )/ L2 for every a € Ng and i € L};

where all the schemes of the form R,y ; are obtained exactly as in proposition to-
gether with the same pairs of projective fibrations to the corresponding base U,y ;. Each
scheme of type (a)-(d) comes with an injective morphism to G (ae;n,d, k), respectively to
G~ (ag;n,d, k), such that the images form a disjoint locally closed covering of G'.

The last 2 types of schemes come together with actions of Zs on the base space and on the
fibers (compatible with the projective fibrations) as follows
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o (Qi,Wi)i=123 = (Qi, Wi)i=2,1,3 for every point of Uy a: ;

o (ju1,112) v (pa, 1) for every point (ui,p2) in the fiber over a triple (Q;, W;)iz1.23 €
Ua,a;i,j-

Moreover, for every scheme R of type (c¢) and (d) there exists a finite disjoint covering of
its base space in G1 X Go x G3 by locally closed subschemes T; that are invariant under the
action of Zo on G1 X Go x Gs; in addition, there exist trivializations of the fibrations from R
to Ugasi -

Rly, = Ty x Po1 x pot

that are compatible with the natural action of Zo on T; x P~ x Pe~1,

Proposition 7.2.3. Let us fiz any triple (n,d, k), a critical value o, for it and a triple
(ng, di, ki)i=1,2,3 compatible with (oe;n,d, k). Let us suppose that conditions , respec-
tively (7.4]), are satisfied. Moreover, let us assume that (ni, k1) = (ng,k2). Let us denote by
G’ the set of all the (E,V)’s in G (ae;n, d, k), respectively in G~ (ae;n,d, k), such that

(i) they have graded at o, given by ®3_,(Q;, W;) of type (ni, di, ki)i=1,2,3;
(i) (Q1, W1) = (Qa2, W2);
(iii) their a.-canonical filtration is of type (2,1).

Then there is a finite family {Ra.q; = Grass(2,Rq.i)} for a € N and i varying in a
finite set (for a fized), together with injective morphisms to GV (ae;n,d, k), respectively to
G~ (ae;n,d, k), such that the images form a disjoint locally closed covering of G'. Here each
Ry.i is a vector bundle over U, with fibers isomorphic to C* and {Ugy}i is a locally closed
disjoint covering of

Ua := {((Q1,W1), (Q3, W3)) € G1 x G5 s.t dim Ext'((Qs, W3), (Q1,W1)) = a}.

7.3 Canonical filtration of type (1,3)

Proposition 7.3.1. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(ng, di, ki)i=1,... 4 compatible with (ac;n,d, k). Let us assume that (n;, k;) # (nj, k;) for i #
Jj €42,3,4} and that

k k
s ovie{2,3,4}, (7.5)
ng o on

respectively that
ki k
— < — l€{2,3,4}. :
nl<n Vie{2,3,4} (7.6)

Let us denote by G’ the set of all the (E,V)’s in GT (ag;n, d, k), respectively in G~ (ae;n, d, k),
such that
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(i) they have graded at o given by ®F_(Q;, W;) of type (ni, di, ki)iz1,... 45

(1) their ae-canonical filtration is of type (1,3).

Then there is a finite family {Rapeijxr}t of schemes for (a,b,c) € N3 and i, j, k varying
in finite sets L2, L3, LY (for a,b,c fized), together with injective morphisms to G (ae;n, d, k),
respectively to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally
closed subschemes. Every scheme Rgp ciji comes with a sequence of 3 morphisms:
¢ ® ¢
Rapeij — Capeiigh — Bapeik — Uapeijk

such that:

e ¢ has fibers isomorphic to P°™1, ¢o has fibers isomorphic to P~ and ¢35 has fibers
isomorphic to P*~1;

e cvery Uy pcijk i the fiber product

2 3 4
Ua,b,c;z’,j,k = Ua;i XG4 Ub;j X Gy Uc;k?

where the set {Uc%z}z 15 a locally closed disjoint covering of

U2 .= {((Q1,W1), (Q2, W) € G1 x Gy s.t. dim Ezt'((Q2, W2), (Q1,W1)) = a}

and analogously for Ul?;j C G1xG3 and Uék C G1xGy. In particular, {Uq:p cii ik tab,c:ijk
18 a disjoint covering of G1 X Ga X G3 X Gy by locally closed subschemes.

Proposition 7.3.2. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(n, di, ki)i=1,... 4 compatible with (ce;n,d, k). Let us assume that conditions , respectively
(7.6), are satisfied. Moreover, let us suppose that (na, ko) = (n3, ks) # (na, k). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that

(i) they have graded at o given by ©i_,(Qi, W;) of type (i, diy ki)iz1,.- 4;
(i) (Qa2, W2) 2 (Q3, W3);

(13) their ac-canonical filtration is of type (1,3).
Then there is a finite family of schemes as follows:
(a) R' = Ryp ik for every a,b,c € No,a < b and (i,5,k) € L2 x L3 x L%;

2 _ . . 2
(b) R = Ry a,c;i,j,k| Gy x (Gax Gs~Ba3) X GaUnacrij s Ua.a.cine 10T €VETY ayc € No,i < j € Ly and
ke Li;

1CiT5%,

jeLykely;
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(d) R* = (Ra,a,c5i,i k]G x (Gax G~ Aaz)xGa) [ L2 for every a,c € No and i € L2 ke L;

where all the schemes of the form Ry i jr are obtained exactly as in proposition to-
gether with the same triples of projective fibrations to the corresponding base Uy i ji- Each
scheme of type (a)-(d) comes with an injective morphism to G*(a¢;n,d, k), respectively to
G~ (ag;n,d, k), such that the images form a disjoint locally closed covering of G'.

The last 2 types of schemes come together with actions of Zs on the base space and on the
fibers (compatible with the projective fibrations) as follows:

o (Qi, Wi)iz123.4 — (Qi, Wi)i=1,32,4 for every point of Uq q.ci ks
o (p2,p3, pa) — (3, p2, pa) for every point (u2, ps, pa) in the fiber over a quadruple

(Qi, Wi)i=1,-- 4 € Ugacijik-

Moreover, for every scheme R of type (¢) and (d) there exists a finite covering of its base
space in G1 X Go X G3 X G4 by locally closed subschemes T that are invariant under the action
of Zo on Go X G3 = Gy X Go in G1 X Go X G3 X Gy4; in addition, there exist trivializations of
the fibrations from R to Uy g cijk

Rl = Ty x Po 1 x Po—t x pe!
that are compatible with the natural action of Zo on T; x P@~1 x Pa=1 x Pe1,

Proposition 7.3.3. Let us fiz any triple (n,d, k), a critical value o, for it and a quadruple
(4, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that conditions , respectively
(7.6)), are satisfied. Moreover, let us assume that (na, ko) = (ng, k) # (na, ka). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that:

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, di, ki)iz1,... 45
(1) (Q2,W2) ~ (@3, W3);
(#3) their ac-canonical filtration is of type (1,3).
Then there is finite family {Rqpi;} for (a,b) € N* and i,j varying in finite sets (for
a,b fized) together with injective morphisms to G*(ae;n, d, k), respectively to G~ (ae;n, d, k),

such that the images form a disjoint locally closed covering of G'. Each Ry, ; comes with a
sequence of 2 fibrations:

1 o2
Rapsij — Aapsij — Uabii;

such that:

e ¢1 has fibers isomorphic to P*~! and ¢y is a grassmannian fibration Grass(2, Qabiij);
where Qqpij 18 a locally trivial fibration of rank a over Ugp; j;
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e U,y 1s the fiber product of U2,

32

and Uf,j over G, where the set {U(il}z 15 a disjoint
locally closed covering of

U2 := {((Q1,W1), (Q2, Wa)) € G1 x Gg s.t. dim Ext'((Q2, W2), (Q1,W1)) = a}

and analogously for Ugl,j C G1 x Gy. In particular, {Uap; j}api; i o disjoint covering
of G1 X Ga x Gy by locally closed subschemes.

Proposition 7.3.4. Let us fix any triple (n,d, k), a critical value . for it and a quadruple
(ng, di, k;)i=1,... 4 compatible with (ac;n,d, k). Let us assume that conditions , respectively
(7.6), are satisfied. Moreover, let us suppose that (ng, ko) = (n3, k3) = (na, ka). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n,d, k), respectively in G~ (ag;n, d, k), such that

(i) they have graded at o given by ©F_(Qs, W;) of type (i, diy ki )izt 4;
(18) (Qi, Wi) £ (Q, W;) for all i # j € {2,3,4};
(11i) their a.-canonical filtration is of type (1,3).
Then there is a finite family of schemes as follows:
(a) R* = Rypcijk for every a,b,c € No,a < b < c and (i,5,k) € L2 x L} x L%;

2 - .
(b) R® = Ra a6,k | Gy % (GaxGanA) X GaUs.a.esi ik WUararcjui 10T €V€TY a,¢ € No with a < ¢,i <
je€L?andkc L

3 _ .
(¢) R° = (Ra,a,c;i,j,kk;lx(G2xGQ\A)xGQmUa,a,C;wmUaM;j,i,k)/ZQ Jor every a,c € No wilth a <
c,i<j€L? kel

(d) R* = (Ra,a,cii,i k| Gy x (Gax GanA)xGa) /L2 for every a,c € Ng with a < c¢,i € L2, ke L;

5 P 2
(e) R° = Ra,g,a;i,j,kblx(szGQxGQ\A)\(u(,GSS\W}Ua,aﬂ;(,(i),(,(j),g(k)) for every a € No, i, j,k € L
with 1 < j < k. Here every o € S3 acts by permutations on the ordered set {i, j, k};

6 _ .
(f) R® = (Ra,a,a:.5,k|G1 x(GaxGaxGanA)(Up sy« (1,1 2)) Vaasaso (.00 0 1))/ 22 JOT every a € No, i,
jok € L2 withi <j<k;

7 .
(g) R" = (Ra,a,(l;i,j,k|G1><(G2><G2XGQ\A)\(UUGSS\{M,(Q2)}Uaya,a;d(i)yg(j)’(,(k)))/Z2 fOT’ every a € N()vllv
jok € L2 withi < j < k;

S .
(h) R° = (Ra7a7a;i7j7k‘G1><(G2XGQXGQ\A)\(U0633\{id7(13>}Ua,a,a;0<i),d(j>,o'(k)))/Z2 f07° every a NO,Z,
d k€ L2 withi < j <k;

(Z) Rg = (Ra,a,a;i,i,k‘GlX(GQXGQ\A)XGQ)/ZQ fOT every a € No,i, k€ LZ with 1 < k‘,‘

(5) R™ = (Ra,a,a5i,i,il Gy x(Gax GaxGa~))/S3 for every a € Ny, i € L.
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Here A denotes both the diagonal of Go x Ga and the “big” diagonal of Ga X G x G (i.e.
the set of triples of objects such that at least 2 of them are isomorphic). All the schemes of
the form Ry p ik are obtained exactly as in pmposition together with the same triples
of projective fibrations to the corresponding base Uy ci j k- Each scheme of type (a)-(j) comes
with an injective morphism to Gt (ae;n, d, k), respectively to G~ (ae;n,d, k), such that the im-
ages form a disjoint locally closed covering of G'.

The schemes (c),(d) and (f)-(i) come with actions of Zs on the base space and on the fibers
(compatible with the projective fibrations) as follows

e (Qi, Wi)iz1234 — ((Q1, W1), (Qu(iy, Wo(i))i=2,34);

o (2, 3, p1a) = (Ho(2)s Ho(3)s Ho(a)) for every point (ua, p13, pa) in the fiber over a quadruple
(Qi, Wi)i=1,... 4.

Here o is the permutation (12) in cases (c),(d),(f) and (i), o = (23) in case (g) and
o = (13) in case (h); in all the various cases o acts by permutations on the ordered set
{2,3,4}. For every scheme R of type (c),(d) and (f)-(i) there exists a finite covering of its
base space in G1 X Go X Go X Gy by locally closed subschemes T that are invariant under the
action of Zga on the i-th and j-th copies of Go in G1 X Ga x G2 X Gy if o = (i 7). In addition,
there exist trivializations of the fibrations from R to U, 4 c:ij k

Rly, = Ty x Po71 x po—t x pe!

that are compatible with the action of Zy on Ty x P~ x Pe~1 x Pe—1,

The schemes of the form (j) come with actions of S3 on the base space and on the fibers
(compatible with the projective fibrations) as follows: for every o € Ss (considered as the group
of permutations of {2,3,4}) we have:

o (Qi, Wi)i=1234 + ((Q1, W1), (Qu(i)s Wo(i))i=2,3,4) for every point of the scheme Uy q a:i.i.i;

o (pi)i=234 > (Mo())i=2,34 for every point (u2,u3, pa) in the fiber over a quadruple
(Qi, Wi)iz=1,. 4 € Unaasisii-

Moreover, for every scheme R of type (j) there exists a finite covering of its base space in
G1 X Go X Go x Go by locally closed subschemes T that are invariant under the action of S3 on
G1 x Gg x G2 X Ga; in addition, there exist trivializations of the fibrations from R to Uq iz

10y byl

Rlyy =5 Ty x Pat x po—t x pat
that are compatible with the natural action of Sz on Tj x Pe~1 x Pa—1 x pa—1,
Proposition 7.3.5. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (ce;n,d, k). Let us assume that conditions , respectively

(7-6), are satisfied. Moreover, let us assume that (na, ko) = (ng, ks) = (na, ka). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n, d, k), respectively in G~ (ae;n,d, k), such that:



126 7. Parametrization of coherent systems with non-unique Jordan-Hélder filtration

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, di, ki)iz1,... 45
(i1) (Q2, W2) =~ (Q3, W3) # (Qa, Wa);
(113) their a.-canonical filtration is of type (1,3).

Then there is finite family {Rqpi;} for (a,b) € N? and i,j varying in finite sets (for
a,b fized) together with injective morphisms to G¥(ag;n, d, k), respectively to G~ (ae;n, d, k),
such that the images form a disjoint locally closed covering of G'. Each Ry, ; comes with a
sequence of 2 morphisms:

¢ ¢
Rapij — Bapig — Vabis
such that:
e the first fibration has fibers isomorphic to P*~1;

e the second fibration is a grassmannian fibration Grass(2,Qup:i ), where Qqpij s a
locally trivial fibration of rank a over Vg . j;

e for each (a,b,1,j), Vopi; is defined as the scheme

Vapig = (Usi X, Upy) N(G1 x (G2 x Ga N A)).

Here {Uiz}l s a finite disjoint locally closed covering of

U2 := {((Q1,W1), (Q2, W) € G1 x Gy s.t. dim Ext'((Q2, W2), (Q1,W1)) = a}

and analogously for Uéj C G1 x Ga. In particular, {Vypij}apij 15 a disjoint covering
of G1 x (G2 x Ga . A) by locally closed subschemes.

Proposition 7.3.6. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cc;n,d, k). Let us assume that conditions , respectively
(7-6), are satisfied. Moreover, let us assume that (na, ko) = (ng, ks) = (na, ka). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that:

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, di, ki)iz1,... 45
(i) (Qa2, W2) = (Q3, W3) = (Qa, Wa),
(113) their canonical filtration is of type (1,3).

Then there is finite family {Rs.q; = Grass(3,Rqi)} for a € N and i varying in a fi-
nite set (for a fized), together with injective morphisms to Gt (ae;n,d, k), respectively to
G~ (ac;n, d, k), such that the images form a disjoint locally closed covering of G'. Each Ry is
a locally trivial fibration over U, ; with fibers isomorphic to C* and {U,y}i is a locally closed
disjoint covering of

Ua = {((Q1, W), (@2, W2)) € G1 x Gy s.t. dim Eat' ((Q2, Wa), (Q1,W1)) = a}.
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7.4 Canonical filtration of type (3,1)

Proposition 7.4.1. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(ng, di, ki)i=1,... 4 compatible with (ac;n,d, k). Let us assume that (n;, ki) # (nj, k;) for i #
j €41,2,3} and that

ki k )
— <= Vie{l,2,3} (7.7)
n; n

respectively that
ki k .
— >V 1,2,3}. 7.8
ns ¥ ovie23) (19

Let us denote by G’ the set of all the (E,V)’s in GT (a¢;n, d, k), respectively in G~ (ae;n, d, k),
such that

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, di, ki)iz1,... 45

)

(1) their ae-canonical filtration is of type (3,1).

Then there is a finite family {Rap ik} of schemes for (a,b,c) € N* and i, j, k varying
in finite sets (for a,b,c fized), together with injective morphisms to G*(ae;n,d, k), respec-
tively to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed

subschemes. Every scheme Ry p ik comes with a sequence of 3 morphisms:
1 2 @3
Rapeij — Capeige — Bapeijk = Uabesigk
such that:

o &1 has fibers isomorphic to P°™1, ¢o has fibers isomorphic to P~ and ¢ has fibers

isomorphic to P¢~1;

o cvery Uy pcijk 45 the fiber product

1 2 3
Ua,b,c;i,j,k = Ua;i X Gy Ub;j X Gy Uc;k7

where the set {Uil}z 15 a locally closed disjoint covering of

Ur := {((Q1,W1), (Qa, W4)) € G1 x Gy s.t. dim Ext'((Qs, Wa), (Q1,W1)) = a}

and analogously for Ub2;j C GoxGy and ng C G3xGy. In particular, {Uqp cii ik tabciijk
18 a disjoint covering of G1 X Ga X G3 X Gy by locally closed subschemes.

Proposition 7.4.2. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cc;n,d, k). Let us assume that conditions , respectively
(7.8), are satisfied. Moreover, let us suppose that (ni,k1) = (na, ko) # (ns, k3). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n, d, k), respectively in G~ (ae;n, d, k), such that
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(i) they have graded at o given by ®_,(Qi, W;) of type (ni, di, ki) a;
(1i) (Q1, W1) 2 (Q2, Wa);
(#) their ac-canonical filtration is of type (3,1).
Then there is a finite family of schemes as follows:
(a) R' = Ryp ik for every a,b,c € No,a < b and (i,7,k) € L} x L2 x L3;

2 . : 1
(b) R = Raacijkl(GixGi~A12)xGaxCaUn ot juUs.a.aiji 10T €0€TY @y ¢ € No,i < j € L, and
kelL?;

(¢) R® = (Raacijk
j € Lok € L;

(GlXGl\AlQ)XGlfv><G4mUa,a,c;1',,j,k)mUa,a,c;j,i,k)/Z2 fO?ﬁ every a?c S NO and Z <

(d) R* = (Raa,ciiik|(GyxGaAr2)x Gy xGa) [ L2 for every a,c € No and i € Ll ke L3

where all the schemes of the form Ry i jx are obtained exactly as in proposition to-
gether with the same triples of projective fibrations to the corresponding base Uy p i ji. Each
scheme of type (a)-(d) comes with an injective morphism to GT(ag;n,d, k), respectively to
G~ (ae;n,d, k), such that the images form a disjoint locally closed covering of G'.

The last 2 types of schemes come with actions of Zs on the base space and on the fibers
(compatible with the projective fibrations) as follows:

e (Qi, Wi)iz12.3.4 — (Qi, W;)i=21,3.4 for every point of Ug g c:i jk;s

o (m1,p,p3) = (p2,p1,p3) for every point (u1,p2, pu3) in the fiber over a quadruple
(Qia Wz’)i:l,---,4 m Ua,a,c;i,j,k’-

Moreover, for every scheme R of type (c) and (d) there exists a finite covering of its base
space in G1 X Go X G3 X Gy by locally closed subschemes T} that are invariant under the action
of Zo on G1 X Gog = G1 X Gg in G1 X Go X G3 x Gy4; in addition, there exist trivializations of
the fibrations from R to Ug g ¢k

Rl = Ty x Po 1 x Po=t x pe!
that are compatible with the natural action of Zo on T x P~ x Pa—1 x Pe1,

Proposition 7.4.3. Let us fiz any triple (n,d, k), a critical value o, for it and a quadruple
(ng, di, ki)i=1,... 4 that is compatible with (ac;n,d, k). Let us assume that conditions ,
respectively (7.8), are satisfied. Moreover, let us assume that (n1, k1) = (ng, ko) # (ns, ks).
Let us denote by G' the set of all the (E,V)’s in GT(ae;n, d, k), respectively in G~ (ae;n, d, k),
such that:

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, diy ki)iz1,... 45
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(i) (Q1,Wh) = (Q2, W2);
(#3) their ac-canonical filtration is of type (3,1).
Then there is a finite family {Rqpij} for (a,b) € N? and i,j varying in finite sets (for
a,b fized) together with injective morphisms to G (ae;n, d, k), respectively to G~ (ae;n, d, 1),

such that the images form a disjoint locally closed covering of G'. Each Rqp; comes with a
sequence of 2 morphisms:

¢ ¢
Rapig — Aapiig — Uabi
such that:
e the first fibration has fibers isomorphic to P*~1;

e the second fibration is a grassmannian fibration Grass(2,Qup:i;), where Qqpij is a
locally trivial fibration of rank a over Ug . j;

e Uyypij is the fiber product of Ué»

32

and Ugj over Gy, where {U,,;}i is a disjoint locally
closed covering of

Uy = {((Q1,W1), Q1. Wa)) € G1 x Gy s.t. dim But'((Qa, Wa),(Q1,W1)) = a}

and analogously for Ug,j C Gz x Gy4. In particular, {Uqp.i;}api; 05 a disjoint covering
of G1 X G5 x G4 by locally closed subschemes.

Proposition 7.4.4. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cc;n,d, k). Let us assume that conditions , respectively
(7-8), are satisfied. Moreover, let us suppose that (ni,k1) = (na, k2) = (ns, k3). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that:

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, diy ki)iz1,... 45

(1) (Qi, Wi) £ (Qj,W;) for all i # j € {1,2,3};

(1) their ac-canonical filtration is of type (3,1).
Then there is a finite family of schemes as follows:
(a) R' = Ry p.ciji for every a,b,c € No,a < b < cand (i,j,k) € L x Lg x L3;

2 _ - .
(b) R* = Raaciijikl(GixGinA)XG1 X GaUs g csiv kMWUa e 10T €VETY ;¢ € No with a < ¢,1 <
jeLL and ke L;

vvvvv

c,i<jeLl kel
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(d) R* = (Ra,a,c5i,i k| (GrxGiA)x Gy xGa ) /L2 for every a,c € Ng with a < c,i € Ll kel?;

5 _ C 1
(e) R - Ra,a,a;i,j,k|(Gl ><G1\A)><G1 ><G4\UUES3\{id}Ua,a,a;o(i),a(j),a(k) fOT every a € N07,L7.77k € La
with 1 < j < k. Here every o € S3 acts by permutations on the ordered set {i, j, k};

6 .
(f) R = (Ra,a,a;z‘,j,k|(G1 xG1NA)X Gy XG4\U0653\{M,(1 2)}Ua,a,a;a(i),o(j),o'(k))/ZQ fOT every a € NOa,La
j k€ LL withi < j <k.;

7 _ .
(9) R" = (Raa,a5i,5k (G x G1nA) X G1 X GanUg e sy (1023 Unra aso (.00 ) 22 foT €very a € No, i,
jok € LY withi < j < k;

8 _ .
(h) R® = (Ra,a,0:ij.kl(Gi x G1nA) X GL X GuUpe sy (10,1 3)) Un asaso (.0 oty )/ L2 JOT €very a € No, i,
jok € LY with i < j < k;

(Z) R9 = (Ra,a,a;i,i,k

(GLxG1~A)xG1xGa)/ L2 for every a € No, i,k € L2 with i < k;
(5) R = (Raa,a3i,i,il(G1xGr xG1~0)xG4) /3 for every a € No,i € L.

Here A denotes both the diagonal of G1 x G1 and the “big” diagonal of G1 x G1 x G1. All
the schemes of the form Ry i jr are obtained exactly as in proposition together with
the same triples of projective fibrations to the corresponding base U,y i jx- Each scheme of
type (a)-(1) comes with an injective morphism to Gt (ag;n, d, k), respectively to G~ (ae;n, d, k),
such that the images form a disjoint locally closed covering of G'.

The schemes (c),(d) and (f)-(i) come with actions of Zg on the base space and on the fibers
(compatible with the projective fibrations) as follows

o (Qi, Wi)iz1234 = ((Qu(i) Wo(i))i=1,2,3, (Q4, W4))

o (111, 12, 113) = (Ho(1)s Ho(2)s Ho(3)) Jor every point (11, pa, pi3) in the fiber over a quadruple
(Qi, Wi)i=1,... 4.

Here o is the permutation (12) in cases (c), (d), (f) and (i), o = (23) in case (g) and
o = (13) in case (h). For every scheme R of type (c),(d) and (f)-(l) there exists a finite
covering of its base space in G1 X G1 X G1 X G4 by locally closed subschemes T; that are
inwvariant under the action of Zo on the i-th and j-th copies of G1 in G1 X G1 X G1 X G4 if
o = (ij); in addition, there exist trivializations of the fibrations from R to Ug g c.ijk:

Ry, = Ty x o x pot x pet

that are compatible with the action of Zo on Tj x P~ x Pe—1 x Pe—1,

The schemes of the form (j) come with actions of S3 on the base space and on the fibers
(compatible with the projective fibrations) as follows: for every o € Ss we have:

o (Qi, Wi)iz1234 = (Qo(i), Wa(i))i=1,2,3, (Q1, Wa)) for every point of the scheme Uq g a:i.ii5
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o (pi)i=123 V> (Ho())i=1,23 for every point (u1, 2, pu3) in the fiber over a quadruple
(Qis Wi)i=1,. 4 € Unaaiii-

Moreover, for every scheme R of type (j) there exists a finite covering of its base space in
G1 X G1 X Gy x Gy by locally closed subschemes T} that are invariant under the action of Ss on

Rlpy = Ty x Pat x pot x pot
that are compatible with the natural action of Sz on Tj x P¢~1 x Pa—1 x pa—1,

Proposition 7.4.5. Let us fiz any triple (n,d, k), a critical value o for it and a quadruple
(4, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that conditions , respectively
(7.8), are satisfied. Moreover, let us assume that (n1, k1) = (n2, ko) = (ns, k3). Let us denote
by G’ the set of all the (E,V)’s in G (ae;n, d, k), respectively in G~ (ae;n,d, k), such that:

(i) they have graded at o given by EB?:I(QZ', Wi) of type (ni, di, ki)i=1,... 4;
(ii) (Q1, W1) =~ (Q2, Wa) # (Q3, W3);
(113) their a.-canonical filtration is of type (3,1).

Then there is finite family {Rapi;} for (a,b) € N? and i,j varying in finite sets (for
a,b fized) together with injective morphisms to G¥(ae;n,d, k), respectively to G~ (ae;n, d, k),
such that the images form a disjoint locally closed covering of G'. Each Ry, ; comes with a
sequence of 2 fibration:

01 P2
Rapsij — Bapsij — Vabi

such that:

e ¢1 has fibers isomorphic to P*~1 and ¢o is a grassmannian fibration Grass(2,Qapsi ;)
where Q.5 15 a locally trivial fibration of rank a over Vg p.; i;

e cvery Vo 18 defined as the scheme

Vasij = (Uss X4 Ug;j) N((G1 x Gy~ A) x Gy).

Here {U;Z}Z is a disjoint locally closed covering of

Ur = {((Q1,W1), (Qa, W4)) € G1 x Gy s.t. dim Ext'((Qa, Ws), (Q1,W1)) = a}

and analogously for Ul?;j C G1 x Gyg. In particular, {Vgpij}apij 15 a disjoint covering
of (G1 x G1 N~ A) X G4 by locally closed subschemes.
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Proposition 7.4.6. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(4, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that conditions , respectively
(7.8), are satisfied. Moreover, let us assume that (n1, k1) = (n2, ko) = (ns, k3). Let us denote
by G’ the set of all the (E,V)’s in GT(ae;n, d, k), respectively in in G~ (ae;n,d, k), such that:

(i) they have graded at o given by @?ZI(QZ', Wi) of type (ni, di, ki)i=1,... 4;

(it) (Q1,W1) ~ (Q2, Wa) ~ (Q3, W3);

(i1i) their ac-canonical filtration is of type (3,1).

Then there is finite family {R3.q.i = Grass(3, Ra;i)} for a € N and i varying in finite sets,
together with injective morphisms to G (ae;n, d, k), respectively to G~ (ae;n,d,), such that
the images form a disjoint locally closed covering of G'. Each Ry.; is a locally trivial fibration
over U, ; with fibers isomorphic to C* and {Uy,i}i is a locally closed disjoint covering of

Ua == {((Q1, W), (Qa, Wi)) € G1 x Gy s.t. dim Eat' ((Qs, Wa), (Q1,W1)) = a}.

7.5 Canonical filtration of type (2,1,1)

In this and in the next 2 sections we state for simplicity only the results that we will need
in the case (n,d, k) = (4,d,1). In this case we will always have that either the first 3 objects
of the graded will be of the same type or the last 3 objects of the graded will be of the same
type. To be more precise, we will only need to consider the first possibility in the case of
canonical filtrations of type (2,1,1), while we will only need to consider the second possibility
in the case of canonical filtrations of type (2,1,1). In case (1,2,1) both possibilities will have
to be taken into account.

Proposition 7.5.1. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cae;n,d, k). Let us assume that (n1, k1) = (ng, k2) = (ns, k3)
and that

k k
WP (7.9)
ni n

respectively that
k k
ULRE (7.10)
ni n

Let us denote by G’ the set of all the (E,V)’s in GT (ag;n, d, k), respectively in G~ (ae;n, d, k),
such that

(i) they have graded at o given by @?ZI(QZ', Wi) of type (ni, di, ki)i=1,... 4;

(i) (Q1,W1) 2 (Qa2, Wa) =~ (Q3, W3);
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(iii) their a-canonical filtration is of type (2,1,1).

Then there is a finite family of schemes {Ré}b,c,d;i,j}z:m,:’, for (a,b,c,d) € N* and i,

varying in finite sets (for a,b,c,d fived), together with injective morphisms to G*(ae;n, d, k),

respectively to G~ (ag;n,d, k), such that the images form a disjoint covering of G' by locally

l

closed subschemes. Fvery scheme R comes with a triple of fibrations:

a,b,c,d;i,j
! NP 0"
Ra,b,c,d;i,j a,b,c,d;i,j Ua,b,c,d;i,j - Gl X Ra§i7

Pasi * Rasi — Ugyi C Gz X Gy
such that:
e ¢! has fibers isomorphic to PP~1 P71 @1 has fibers isomorphic to P41 P*2;
e ¢? has fibers isomorphic to PP~ P!, 62 has fibers isomorphic to P*~2;
e > has fibers isomorphic to P°~1, 03 has fibers isomorphic to P41 ~ P2,
e ©,.; has fibers isomorphic to pe-t.

e Uy, is a finite locally closed disjoint covering of

Uy = {((Q3,W3), (Q4, Wy)) € G3 x Gy s.t. dim Ezt'((Q4, Wy), (Q3, W3)) = a};

every U, is a locally closed subscheme of G3 x G4 and so are all the Uy;’s;

e {Uspedijtj is a finite locally closed disjoint covering of

Uabedi = {((Q1,W1),(E", V")) € G1 X Ryy s.t. dim Ext'(E", V"), (Q1,W1)) = b,
dim Ext' ($ai(E", V"), (Q1,W1)) = ¢, dim Ext'(E", V"), @q(E", V")) = d,
@a;i(EH7 V”) iﬁ (Q17 Wl)};

where Pq;i is the composition of q; with the projection to Gy and P, is the composition
of Yayi with the projection to Gz. Every Uy ¢ 4. 45 locally closed in G1 x Ry, and so are
all the Ugp.c.diij s

Proposition 7.5.2. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(g, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that (n1, ki) = (ng, ka) = (ns, k3)
and that conditions , respectively , are satisfied. Let us denote by G’ the set of all
the (E,V)’s in GT(ae;n,d, k), respectively in G~ (ae;n,d, k), such that

(i) they have graded at o given by ®F_(Qi, W;) of type (ni, diy ki)iz1,... 45

)
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(ii) (Qi. Wi) % (Q).W;) for all i # j € {1,2,3};

(13) their a.-canonical filtration is of type (2,1,1).
Then there is a finite family of schemes as follows:

(a) R} for (a,b,c,d,e) € N°, (b,c) < (d,e) (with lexicographic order) and i,j varying

a?b’c?d7e;l7]

in finite sets (for a,b,c,d,e fived);
(b) R! bebeijl L2 for (a,b,c) € N® and i, j varying in finite sets (for a,b,c fized);
(c) Rg bedeij 10T (a,b,c,d,e) € N° and i,j varying in finite sets (for a,b,c,d, e fived).

Each such scheme comes with an injective morphisms to GT(ag;n,d, k), respectively to
G~ (ag;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-

I - - e
schemes. Every scheme Ra,b,c,d,e;i,j comes with a triple of fibrations:
! ¢ 4l 0"
Ra,b,c,d,e;i,j Aa,b,c,d,e;i,j Ua,b,c,d,e;i,j - Gl X G2 X Ra;i7

Paji * Ra;i — Ua;i C G3 x Gy
such that:
e ¢! has fibers isomorphic to PP P, @ has fibers isomorphic to P4 PeTL;
e 2 has fibers isomorphic to PP~1 P71 62 has fibers isomorphic to P¢1;
e ©q. has fibers isomorphic to P41;

e U, 15 a finite locally closed disjoint covering of

Us :={((Q3,W3),(Qq,Ws)) € G3 X Gy s.t. dim E’Itl((Q4,W4), (Qs,W3)) = a};

every U, is a locally closed subscheme of Gz x G4 and so are all the Ug;’s;

o {Uspredesijti is a finite locally closed disjoint covering of

Uapedei = {((Q1, W1), (Q2, Wa), (E", V")) € G1 x G2 X Ry s.t.
dim Ext' ((E", V"), (Q1,W1)) = b, dim Est' (e (E", V"), (Q1,W1)) = ¢,
dim Bzt (E", V"), (Q2, W2)) =d, dim Ext' ($ai(E", V"), (Q2, W2)) =,

(Qu,W1) £ B (E", V)V =1,2,  (Q1,W1) % (Qa2, Wa)},

where Pq;i 15 the composition of @q; with the projection to G4 and B, 1s the composition
of Yayi with the projection to G3. Every Uy p cd.e:i 45 locally closed in G1 x G2 X Ry, and

50 are all the Ugpc.de:ij’s-
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There is an action of Zo both on Rtlz,b,c,b,c;i,j and on its base Uy pcp.cij given by

i ((Qh Wl)v (Q% W2)7 (EH7 VH)) = ((Q% WQ)v (Qh Wl)v (E//a VH));'
e (], [ra]) = ([v2], [m1]).

Moreover, there exists a finite locally closed disjoint Zo-invariant covering {11}, of Ugpcp.c
and trivializations

R} 7, == Tp x (P71 Pty x (PP Pe Y

a7b7c7b7c;i7j
that are compatible with the natural action of Zo on
Ty x (PP=E Pty x (PP e,

Proposition 7.5.3. Let us fix any triple (n,d, k), a critical value o for it and a quadruple
(ng, di, k;)i=1,... 4 compatible with (ce;n,d, k). Let us assume that (n1, k1) = (n2, k2) = (n3, k3)
and that conditions , respectively , are satisfied. Let us denote by G' the set of all
the (E,V)’s in GT(ag;n,d, k), respectively in G~ (ae;n, d, k), such that

(i) they have graded at o given by ©F_,(Qi, W;) of type (i, diy ki)iz1,.- 4;
(i) (Q1, W) = (Q2, W2) % (Q3, W3);

(iii) their a.-canonical filtration is of type (2,1,1);

Then there is a finite family {Rqpci;} of schemes for (a,b,c) € N3 and i,j varying in
finite sets (for a,b,c fized), together with injective morphisms to G (ae;n, d, k), respectively
to G~ (ag;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Each scheme Ry c.i; comes with a pair of fibrations:

Pa,b,c;i,j * Ra,b,c;i,j — Ua,b,c;i,j C Gl X Ra;h
Pasi * Ra;i — Ua;z‘ C G3 X Gy,

such that:

® Oy b has fibers isomorphic to Grass(2,b) N\ Grass(2,c) and pq;; has fibers isomorphic
to Pa—l’.

e U, 15 a finite locally closed disjoint covering of

Uy = {((Q3, W3), (Qs,Ws)) € G5 x Gy s.t. dim BExt'((Qs, W), (Q3, W3)) = al};

every U, is a locally closed subscheme of Gz x G4 and so are all the Ug;'’s;
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e {Uspcijtj is a finite locally closed disjoint covering of

Ua,b,c;i = {((Ql, Wl), (EH, V”)) S Gl X Ra;i s.t. dzm Extl((E”, V”), (Ql, Wl)) = b,
dim Extl(@a;i(E”a Vﬂ)v (Qla Wl)) =G Ea;i(E”’ V”) 5# (Qla Wl)}7

where Pq;i 15 the composition of @q; with the projection to G4 and B, is the composition
of Ya:i with the projection to Gz. Every Ugyp. ¢ 1s locally closed in Gi X Ry, and so are
all the Uqp c.i j s

Proposition 7.5.4. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(ng, di, ki)i=1,... 4 compatible with (oc;n,d, k). Let us assume that conditions , respec-
tively , are satisfied. Let us denote by G’ the set of all the (E,V)’s in GT(ae;n, d, k),
respectively in G~ (a¢;n,d, k), such that

(i) they have graded at o given by ©i_,(Qi, W;) of type (i, diy ki)iz1,.- 4;
(ii) (Q1, W1) = (Q2, W2) = (Q3, W3);
(iii) their a.-canonical filtration is of type (2,1,1);

Then there is a finite family {Rap. i} of schemes for (a,b) € N? and i,j varying in fi-
nite sets (for a,b fived), together with injective morphisms to G*(ae;n,d, k), respectively to
G~ (ae;n, d, k), such that the images form a disjoint covering of G’ by locally closed sub-
schemes. Each scheme R,y ; comes with a pair of fibrations:

Pabiij - Rapiij — Uapsij C Rasis
Pasi * Ra;i — Ua;i C G3 x Gy,
such that:

® Vg i has fibers isomorphic to Grass(2,b) \ Grass(2,a —1) and @q; has fibers isomor-
phic to P~ 1;

e U, 15 a finite locally closed disjoint covering of

Ua = {((Qg, Wg), (Q4, W4)) € G3 X G4 s.t. dim E:L‘tl((Q4, W4), (Qg,Wg)) = CL};
every U, is a locally closed subscheme of G3 x G4 and so are all the U,;’s;

e {Uaupij}j is a finite locally closed disjoint covering of

Uapi = {(E", V") € Ru;i s.t. dim Ext'(E", V"), @.;(E", V")) = b},

where p,.; 15 the composition of pa;i with the projection to Gs.
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7.6 Canonical filtration of type (1,2,1)

Remark 7.6.1. In order to get a complete description of the Hodge-Deligne polynomials for
the moduli spaces G(«;4,d,1) we should need to compute also 8 polynomials associated to
various subcases for canonical filtrations of type (1,2,1). Regrettably, we are able to give only
a geometric description of 4 subcases, as stated below. The 4 subcases that don’t appear here
are still an open problem; to be more precise, we are able to give a point-wise description
having fixed a graded (see §12.2]for the details), but we are not able to get a global (or local)
description out of it.

Proposition 7.6.1. Let us fix any triple (n,d, k), a critical value . for it and a quadruple
(g, di, ki)i=1,... 4 compatible with (ce;n,d, k). Let us assume that (n1, ki) = (ng, k2) = (n3, k3)
and that

k1

k
— < = 7.11
o < (7.11)
respectively that
k k
2 (7.12)
ni n

Let us denote by G’ the set of all the (E,V)’s in Gt (ag;n, d, k), respectively in G~ (ag;n, d, k),
such that

(i) they have graded at o, given by ©F_(Qi, W;) of type (i, diy ki)iz1,..- 4;

)

(i) (Q1, W1) = (Q2, Wa) % (Q3, W3);

(1) their a.-canonical filtration is of type (1,2,1).

Then there is a finite family of schemes {Rapcdeijk}t for (a,b,c,d,e) € N° and i,7,k
varying in finite sets (for a,b, c,d, e fived), together with injective morphisms to G (ae;n, d, k),
respectively to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally
closed subschemes. Every scheme Rgp cdeiijk comes with a fibration

Pabedesijk * Bapedeiik — Uapedesigk C Rabsij

with fibers isomorphic to P¢~1 ~ P¥e=e=1  Eyery scheme Ry p,j s obtained as follows. First

of all, we consider a cartesian diagram:
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3 3
o eb;j ) Sbsj R2
Qa,b%%] a;t a;t
2
9a§i |:| 1#2;1- D ‘Pg;i
Ui b
3 iJ iJ 2
Q. Ua b, U2, C Gy x Gy
52 O r2. 0 2
a;t ast qa '3
3 3
Sab.,' qb.;
3 3] 3 3
Rb;j Ub;j C Gs x Gy Gy,

(7.13)

where:

o gpg;i is a projective fibration with fibers isomorphic to P! and {Uiz}z 1s a finite locally
closed disjoint covering of

Ug = {((QQ, Wg), (Q4, W4)) € GQ X G4 s.t. dim E’Z‘tl<(Q4, W4), (QQ, Wg)) = a};

every U2 is a locally closed subscheme of Go x Gy and so are all the Uii ’s; we denote
by pg;i and qg;i the projections from U3;¢ to G2 and G4 respectively;

e analogously gpg;j is a projective fibration with fibers isomorphic to P*~1 and {Ulij}j 15 0
finite locally closed disjoint covering of
Uy = {((Q3,W3), (Qa, W1)) € G5 x Gy s.t. dim Eut'((Qa, W), (Q3, W3)) = b};

every UE s a locally closed subscheme of Gs x G4 and so are all the Ug’,j ’s; we denote
by pg.j and qg‘j the projections from Ug’,j to G3 and Gy respectively.

Then we define

Vi = {((Q2, Wa), (Q3, W3), (Q4, W4)) € Ugpsij s-t. (Q2, Wa) % (Q3,W3)}

and

Rapig = QabiijlVapi -

Finally, {Uqp.cdesijkte i a finite locally closed disjoint covering of

Ua7b>cyd>e;i>j = {(E//7 V”) € R(l,b;i,j S't' d/Lm Extl((E//7 V//)7p§ﬂ' ° QOZ,Z °© Sg),‘] o Hg;j(E”’ V”)) = c7
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dim Extl(sg’;j © Hg;j(E”7 V//)7p3;i o SOZ;Z' © Sl?));j ° Hg;j(E”? V//)) = d7
dim E’Z‘tl (32;1' o ag;i(Eﬂa V//)vpczz;i © @(21;2' ° Sg;j ° gg;j(E//? VH)) = 6}'
Every Uy pc.dei,j 45 locally closed in Ry and so are all the Ugp ¢ deijk’s-

Proposition 7.6.2. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cae;n,d, k). Let us assume that (ng, k) = (ns, k3) = (na4, ka)
and that

k k
=252 (7.14)
no n

respectively that
k k
22 (7.15)
ne N

Let us denote by G’ the set of all the (E,V)’s in GT (ag;n, d, k), respectively in G~ (ae;n, d, k),
such that

(i) they have graded at o given by ©i_,(Qi, W;) of type (ni, di, ki)iz1,.- 4;
(i) (Q2, Wa) % (Q3, W3) =~ (Qa, Wa);
(#) their ce-canonical filtration is of type (1,2,1).

Then there is a finite family of schemes {Rapeijr} for (a,b,c) € N* and i, j, k varying
in finite sets (for a,b,c fized), together with injective morphisms to G*(ae;n,d, k), respec-
tively to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed
subschemes. Every scheme Ry p i jr comes with a fibration

Pabciigk - Rapeijhe = Uabeigk C Rabig

with fibers isomorphic to P~ . P*~2. Every scheme R p.i,j is obtained as follows. First of
all, we consider a cartesian diagram:

3 3
o Gb;j ) Sbij R2
Qa,b%%] a;t a;t
2
9a§i |:| %3;1- D wz;z’
3 3
3 wb;j bij 2
Q. Ua b, U2, C Gy x G
s2 O r2. ] 2
a;r ast qa '3
3 3
Sab.,' qb.;
3 3 3 3
Rb;j Ub;j C G1 x Gs Gy,

(7.16)

where:
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o gpg;i is a projective fibration with fibers isomorphic to P! and {Uiz}z 1s a finite locally
closed disjoint covering of

Ug = {((Ql,Wl), (QQ,WQ)) S G1 X GQ s.t. dim E:L'tl((Q2,W2), (Ql,Wl)) = a};

every U2 is a locally closed subscheme of G1 x Go and so are all the Ugﬂ. ’s; we denote
by pg;i and qg;i the projections from Ug;i to Go and G respectively;

e analogously gpg.j is a projective fibration with fibers isomorphic to P*~! and {Ulf’,j}j s a
finite locally closed disjoint covering of

Ug ={((Q1,W1),(Q3,W3)) € G1 x G3 s.t. dim E’xtl((Qg,Wg), (Q1,W7)) =b};

every UE’ 1s a locally closed subscheme of G1 X Gs and so are all the Uy,.;'s; we denote
by pg.j and qg"j the projections from Ug’,j to Gs and G respectively.

Then we define

Vapsig = 1((Q1, W1), (Q2, Wa), (Q3, W3)) € Ugpsij 5.t. (Q2, Wa) % (Q3,W3)}

and

Ra i = QabsiilVapi ;-

Finally, {Uqp.ciijitr i a finite locally closed disjoint covering of

Uapeij = {(E2,Va) € Rapij s.t. dim But' (py; 0 gp; 0 s2; 0 O (Ea, Va), (B2, Va)) = ¢}
Every Uqp c.i,j 45 locally closed in Ry, ; and so are all the Uy p e 1.

Proposition 7.6.3. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(g, di, ki)i=1,... 4 compatible with (cae;n,d, k). Let us assume that (ng, ko) = (n3, k3) = (na4, ka)
and that conditions , respectively , are satisfied. Let us denote by G’ the set of all
the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that

(i) they have graded at o given by @?ZI(QZ', Wi) of type (ni, di, ki)i=1,... 4;
(ii) (Q2,Wa) =~ (Q3, W3) % (Q4, Wy);

(#i) their a.-canonical filtration is of type (1,2,1);
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Then there is a finite family {Rapcij} of schemes for (a,b,c) € N* and i,j varying in
finite sets (for a,b,c fized), together with injective morphisms to G (ae;n, d, k), respectively
to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Each scheme R, ..; j comes with a pair of fibrations:

Pabeig Bapesig — Vapeij C Razi X Ga,
Pasi * Ra;i — Ua;z‘ C G1 x Ga,
such that:

® Vapciy has fibers isomorphic to Pr-1 Pl and Pazi 15 a grassmannian fibration with
fibers isomorphic to Grass(2,a);

e U, 15 a finite locally closed disjoint covering of

Us :={((Q1,W1),(Q2,W3)) € G1 x Gy s.t. dim E’Itl((Qg,Wg), (Q1,W1)) = a};

every U, is a locally closed subscheme of G1 x Ga and so are all the Uy;’s;

o {Uspeijtj is a finite locally closed disjoint covering of

Ua,b,c;i = {((EQ, VQ), (Q4, W4)) S Ra;i X G4 s.t. dim Extl((Q4, W4), (EQ, Vg)) = b,
dim E$t1((Q4, W4)7¢a;i(E2> ‘/2)> = S/Ea;i(EQ’ V2) ¢ (Q47 W4)}>

where Py.; is the composition of @q; with the projection to G1 and pq;; is the composition
of pa;i with the projection to Ga. Every Ugyp. e 18 locally closed in Ry; x G4 and so are
all the Ug p.c.i 5 's.

Proposition 7.6.4. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(4, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that (ng, ko) = (n3, k3) = (na, ka)
and that conditions , respectively , are satisfied. Let us denote by G’ the set of all
the (E,V)’s in G (ae;n,d, k), respectively in G~ (ae;n,d, k), such that

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, diy ki)iz1,... 45
(ii) (Q2, W2) = (Q3, W3) =~ (Qa, Wa);

(#ii) their a.-canonical filtration is of type (1,2,1);

Then there is a finite family {Rap;} of schemes for (a,b) € N? and 4,5 varying in fi-
nite sets (for a,b fived), together with injective morphisms to G*(ae;n,d, k), respectively to
G (ag;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Each scheme R, p; ; comes with a pair of fibrations:
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Pabsini * Rapij — Uapsij C Ras,
Payi - Ra;i > Ua;z‘ C Gl X G27

such that:

® Vupij has fibers isomorphic to P~1 (P73 and Ya:i 45 a grassmannian fibration with

fibers isomorphic to Grass(2,a);

e U, 15 a finite locally closed disjoint covering of

Uy = {((Q1, W1), (Q2, Wa)) € Gy x Gy s.t. dim Ext'((Qz, Wa), (Q1, W1)) = a};

every U, is a locally closed subscheme of G1 x G and so are all the U,;’s;

o {Uspiij}j is a finite locally closed disjoint covering of

Uapi = {(E2,Va) € Ry s.t. dim Ext'(Pai(E2, Va), (B2, Va)) = b},

where Qq.; 1s the composition of pa; with the projection to Ga. Every Ugyp.; is locally
closed in Ry and so are all the Uy ;'s.

7.7 Canonical filtration of type (1,1,2)

Proposition 7.7.1. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cae;n,d, k). Let us assume that (ng, k) = (ns, k3) = (na4, ka)

and that
k k
252 (7.17)
no  n

respectively that
k k
=22 (7.18)
no n

Let us denote by G’ the set of all the (E,V)’s in G1 (ag;n, d, k), respectively in G~ (ag;n, d, k),

such that
(i) they have graded at o given by ©F_(Qs, W;) of type (i, di, ki )izt 4;

(ii) (Q2, W2) =~ (Q3,W3) % (Qu, Wa);

(#i) their a-canonical filtration is of type (1,1,2).
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Then there is a finite family {Ropca:i;} of schemes for (a,b,c,d) € N* and i,j varying
in finite sets (for a,b,c,d fived), together with injective morphisms to G (ae;n, d, k), respec-
tively to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed
subschemes. Every scheme Ry c 4. comes with a triple of fibrations:

¢ ¢
Ra7b,c7d;i,j —1> Aa,bp,d;i,j —2> Ua,b,c,dmj C Ra;i X G47
Pagi Ra;i — Ua;i C G1 x Gy
such that:
e ¢1 has fibers isomorphic to P41 P2, ¢ has fibers isomorphic to PP~ Pe1;
e g has fibers isomorphic to P4~L;

e U, 1s a finite locally closed disjoint covering of

Ua = {((Ql,Wl), (QQ,WQ)) S Gl X GQ s.t. dim E’Z'tl((QQ,WQ), (Ql,Wl)) = (I};

every U, s a locally closed subscheme of G1 x Ga and so are all the Uy;’s;

o {Usprcdijtj is a finite locally closed disjoint covering of

Ua,b,c,d;i = {((E27 VQ)a (Q47 W4)) € Ra;i X G4 s.t. dim Extl((Q47 W4)7 (E27 VQ)) - ba
dim Ext'((Q4, W4), Pasi(Ea, Va)) = ¢,  dim Ext' (p,.,(Ea, Va), (B2, V2)) = d,
@a;i(EQ’ VQ) ;é (Q4a W4)}7

where Pq;; 15 the composition of @q; with the projection to Gy and @, is the composition
of pa;i with the projection to Ga. Every Ugp c 4 @5 locally closed in Ry X G4 and so are
all the Ugp c.dii j s

Proposition 7.7.2. Let us fir any triple (n,d, k), a critical value o, for it and a quadruple
(ni, di, ki)i=1,... 4 compatible with (cae;n,d, k). Let us assume that (ng, k2) = (ns, k3) = (na4, ka)
and that conditions , respectively , are satisfied. Let us denote by G’ the set of all
the (E,V)’s in G*(ag;n,d, k), respectively in G~ (ae;n, d, k), such that

(i) they have graded at o given by ©F_,(Qi, W;) of type (i, diy ki)iz1,.- 4;
(1i) (Qi, Wi) 2 (Q;, W;) for all i # j € {2,3,4};

(iii) their ce-canonical filtration is of type (1,1,2).

Then there is a finite family of schemes as follows.
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(a) Rapedei; for (a,b,c,d,e) € N5 with (b,c) < (d,e) (with lexicographic order) and i, j
varying in finite sets (for a,b,c,d, e fized);

(b) Rapepeij/Ze for (a,b,c) € N3 for and i, j varying in finite sets (for a,b,c fived).

Each such scheme comes with an injective morphisms to GT (ag;n,d, k), respectively to
G~ (aen,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Every scheme Ry p cdei; comes with a triple of fibrations:

Rapcdeij o, Aubedei SN Uap,e,deij C Rai X Gg X Gy,
Pasi * Rai — Ugyi € G1 X G
such that:
e ¢1 has fibers isomorphic to P41 P, ¢y has fibers isomorphic to PP PeL;
e ©q. has fibers isomorphic to P4L;

e Uy, is a finite locally closed disjoint covering of

Ua = {((Ql,Wl), (QQ,WQ)) S Gl X G2 s.t. dim El‘tl((QQ,Wg), (Ql,Wl)) = CL};

every U, is a locally closed subscheme of G1 x G and so are all the U,;’s;

o {Usprcdesijtj is a finite locally closed disjoint covering of

Uapedei = {((E2,V2), (Q3,W3), (Q4, W4)) € Ray x G3 x Gy s.t.
dim Ezt' ((Qs, Wa), (B2, V2)) =b, dim Evt'((Qa, Wa), Gusi (B2, V2)) = ¢,
dim E’xtl((Q& W3)7 (E27 VvQ)) = d7 dim E’Z'tl((Qg, W3)7 Sza;i(EQ; V2)) =6

(Qu, W) % By (E2,V2) for 1 =3,4, (Q3,Ws) % (Q4, Wa)},

where qsi is the composition of pa;; with the projection to G and @, is the composition
of Yayi with the projection to Ga. Every Uy p ¢ d.e:i 45 locally closed in Ry; x G3 x G4 and
50 are all the Uy pc.de:ij’s.

There is an action of Zg both on Rap cp.cij and on its base Ugp cp e given by

o ((E2,V2),(Q3,W3), (Q, Wa)) = ((E2, V2), (Q4, Wa), (Q3, W3));

o ([vs]; [va]) = ([val, [v3)).
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Moreover, there exists a finite locally closed disjoint Za-invariant covering {11}, of Ugp.cp.c
and trivializations

Ra,b7c,b,c|Tl ;> ﬂ X (]P)b_l N ]Pc_l) X (Pb—l N ]P)c—l)

that are compatible with the natural action of Zo on

Ty x (PP~ Pty x (PP oY),

Proposition 7.7.3. Let us fix any triple (n,d, k), a critical value . for it and a quadruple
(ni, di, k;)i=1,... 4 compatible with (oe;n,d, k). Let us assume that (ng, ko) = (ns3, k3) = (n4, ka)
and that conditions , respectively , are satisfied. Let us denote by G’ the set of all
the (E,V)’s in GT(ag;n,d, k), respectively in G~ (ae;n, d, k), such that

(i) they have graded at o given by @?ZI(QZ', Wi) of type (ni, di, ki)i=1,... 4;
(ii) (Q2, W2) 2 (Q3,W3) ~ (Qq, Wa);
(iii) their ce-canonical filtration is of type (1,1,2).

Then there is a finite family {Rapcij} of schemes for (a,b,c) € N® and i,j varying in
finite sets (for a,b,c fized), together with injective morphisms to G (ae;n, d, k), respectively
to G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Each scheme Ry ..; j comes with a pair of fibrations:

Pa,b,c;i,j * Ra,b,c;i,j — Ua,b,c;i,j C Ra;i x G3,
Pazi * Razi — Ugy C G X G,
such that:

® Vapci; has fibers isomorphic to C?% x Grass(2,b—c) and Ya:i has fibers isomorphic to
]P)a—l;

o U, 1s a finite locally closed disjoint covering of

Ua = {((Ql,Wl), (QQ,WQ)) c G1 X GQ s.t. dim E$t1<(Q2,W2), (Ql,Wl)) = a};

every U, is a locally closed subscheme of G1 x Ga and so are all the Uy;’s;

e {Uspeijtj is a finite locally closed disjoint covering of

Uapei = {((Ba, V2), (Q3,W3)) € Ry x G3 s.t. dim Ext*((Q3, W3), (E2,V3)) = b,
dim E’:L‘tl((QS’ Wg)v @a;i(EQ) VQ)) =G (Q37 W3) ¢ @a;i(EQv VQ)}v

where Pq;i 15 the composition of @q; with the projection to G1 and @, is the composition
of pa:i with the projection to Ga. Every Ugyp. i 15 locally closed in R,; x G3 and so are
all the Uqp c.i 5 s
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Proposition 7.7.4. Let us fir any triple (n,d, k), a critical value o for it and a quadruple
(ng, di, ki)i=1,... 4 compatible with (oe;n,d, k). Let us assume that (ng, ko) = (n3, k3) = (na, ka)
and that conditions , respectively , are satisfied. Let us denote by G’ the set of all
the (E,V)’s in GT(ag;n,d, k), respectively in G~ (ae;n, d, k), such that

(i) they have graded at o given by ®F_(Q;, W;) of type (ni, di, ki)iz1,... 4;
(i) (Qa2, W2) = (Q3, W3) = (Qa, Wa);

(#ii) their a-canonical filtration is of type (1,1,2).

Then there is a finite family {Rqypi;} of schemes for (a,b) € N? and i,j varying in fi-
nite sets (for a,b fived), together with injective morphisms to G*(ae;n,d, k), respectively to
G~ (ae;n,d, k), such that the images form a disjoint covering of G' by locally closed sub-
schemes. Each scheme R,y ; comes with a pair of fibrations:

Pabiig - Rapiij — Uapsij C Rasis
Casi : Ra:i — Ug:i C G1 X G,
such that:

e Vupi; has fibers isomorphic to C**~2 x Grass(2,b—a+1) and ¢4 has fibers isomorphic
to Pafl;

e U, 15 a finite locally closed disjoint covering of

Uy := {((Q1, W1), (Q2, W2)) € G1 x Ga s.t. dim Ext'((Q2, Wa), (@1, W1)) = a};
every U, is a locally closed subscheme of G1 x Ga and so are all the Uy;’s;
e {Uapij}j is a finite locally closed disjoint covering of

Uapi = {(E2,V2) € Rayi s.t. dim Ext'(@,,(E2, Va), (B2, V2)) = b},

where ©,.; is the composition of pq; with the projection to Ga. Every Ugp; 1s locally
closed in Ry and so are all the Ugyp.; ;'s.



Chapter 8
Hodge-Deligne polynomials

We use Deligne’s extension of Hodge theory which applies to varieties which are not nec-
essarily compact, projective or smooth (see [D1], [D2] and [D3]). We start by giving a review
of the notions of pure Hodge structure, mixed Hodge structure, Hodge-Deligne and Hodge—
Poincaré polynomials.

Definition 8.0.1. A pure Hodge structure of weight m is given by a finite dimensional Q-
vector space Hg and a finite decreasing filtration F? of H = Hp ® C

H>...OFP>...D(0),
called the Hodge filtration, such that H = FP @ F™—P+1 for all p. When p + ¢ = m, if we set
HPY = FP N F4, the condition H = FP @ Fm—p+1 for all p implies an equivalent definition for
a pure Hodge structure, that is, a decomposition

H=  H""

ptg=m
such that HP4 = H%P. The relation between the two equivalent definitions is the follow-
ing. Given a filtration {FP},, we obtain a decomposition by considering HP?? = FP N F4.
Conversely, given a decomposition {HP?}, ., this defines a filtration as above by FP =
®i2p Hi,m—i‘

The n-th cohomology group of a smooth projective variety H"(X) carries a pure Hodge
structure of weight n. If Q% denotes the complex of holomorphic differential forms, and
(2%)=P is the subcomplex of forms of degree greater than or equal to p, then H"(X,C) =
H(X,Q%). The role of the Hodge filtration is played here by the following filtration:

FP = Im(H"(X, (2%)=") — H"(X, Q%)).

A morphism of Hodge structures is a map fq : Hg — Hg such that fc(FPH) C FPH' for
all p, where fc = fo ® C and FPH is the p-th element in the Hodge filtration of H. When
the Hodge structures have the same weight, fg strictly preserves the filtration, that is

fe(FPH) =Im(fc) N FPH'.

147
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Definition 8.0.2. A mized Hodge structure consists of a finite dimensional Q-vector space
Hg), an increasing filtration W; of Hg, called the weight filtration

...CW, C...C Hg,

and a Hodge filtration FP of H = Hg ® C, such that the filtrations FPGr}" induced by FP on

GT‘ZVV = (VVlH@/VVl—lHQ) QR C = VVZH/VVZ—IH

give a pure Hodge structure of weight [ to that object. Here FpGer is given by
(WiH N FP + Wi H) /Wi H.

A morphism of type (r,r) between mixed Hodge structures, Hgp with filtrations W,,, and
FP, and Hg with Wy and F', is given by a linear map

L:Hg — Hj

satisfying L(Wy,) C W), o, and L(FP) C F'P*". Any such morphism is then strict in the
sense that L(FP) = Im(L) N F’P*"  and the same for the weight filtration.

Definition 8.0.3. A morphism of type (0,0) between mixed Hodge structures, is called a

morphism of mized Hodge structures.

Deligne proved that for every complex variety X (not necessarily irreducible, smooth
or projective) the cohomology groups H*(X,Q) and the cohomology groups with compact
support H¥(X, Q) carry natural mixed Hodge structures (see [D1], [D2] and [D3]). Associated
to the Hodge filtration and the weight filtration we can consider the quotients Ger =W /W4
and Gr%Ger =F pGer /F pHGer, and analogously for the cohomology groups with compact
support. Then we can define the Hodge-Deligne numbers of X as follows.

Definition 8.0.4. For a complex algebraic variety X, not necessarily smooth, compact or
irreducible, we define its Hodge-Deligne numbers as

WPU(HY (X)) = dim GrlpGr)l, HE(X).

Then we introduce the following Euler characteristic:

Xpg(X) =Y (1) WPI(HE(X)). (8.1)
k

Analogously, we write x, (X)) for the Euler characteristic (8.1) of H®*(X). If X is smooth
of dimension n, then Poincaré duality tells us that

Xp.q(X) = Xn—pn—q(X)-

We are now ready to define the Hodge-Deligne polynomial.
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Definition 8.0.5 ([DK]). For any complex algebraic variety X, we define its Hodge-Deligne
polynomial (or virtual Hodge polynomial) as:

HD(X)(u,v) := > (=1)PTIE (X )uPv? € Z[u,v].

p,q

Danilov and Khovanskii ([DK]) observed that HD(X)(u,v) coincides with the classical
Hodge polynomial when X is smooth and projective. Indeed, under these hypotheses, the
mixed Hodge structure on H¥(X) is pure of weight k, so

HYX) ifm=k
GrlVHF(X) =

rm He (X) {0 if m # k.
Then

HD(X)(u,v) = > hPI(X )ulvr, (8.2)

p.q

where hP9(X) = hP9(HPT9(X)) are the classical Hodge numbers of X and (8.2) the classical
Hodge polynomial.

We may define another polynomial using the Euler characteristic x,(X) for rational
cohomology groups without compact support. As we have already said Deligne proved that
these groups carry a natural mixed Hodge structure.

Definition 8.0.6. For a complex algebraic variety X, not necessarily smooth, compact or
irreducible, we define its Hodge-Poincaré numbers as

WP HY(X)) == dim Gri.Gr)Y H"(X).
We are ready now to define the Hodge-Poincaré polynomial.
Definition 8.0.7. For any complex algebraic variety X, we define its Hodge—Poincaré poly-
nomial as

HP(X)(u,v) := Y (=1)PFx, o(X)uPv? =) (=1)PFHFRPa(HY(X))uPol.
P.q p,q;k

Remark 8.0.1. When our algebraic variety X is smooth, Poincaré duality gives us the following
functional identity relating Hodge-Deligne and Hodge-Poincaré polynomials
HD(X)(u,v) = (w)i™eX . HP(X)(u™,v71) (8.3)

where dimc X denotes the complex dimension of X. If X is not only smooth, but also pro-
jective, then its Hodge-Deligne polynomial coincides with the Hodge-Poincaré polynomial, so
the in this case Poincaré duality can be stated as:

HD(X)(u,v) = (wv)8meX . 4D(X) (w071 (8.4)
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Let b*(X) = dim H*(X) be the k-th Betti number of the variety X and let Px(t) =
S VF(X)tk be its Poincaré polynomial. If X is not only smooth, but also projective, the
Betti numbers of X satisfy

(X)) = ) wIHNX)), (8.5)
pt+q=k
so that
Px(t) =Y W(X)tF = HD(X)(t,t) = HP(X)(t,1). (8.6)
k

We list below some very useful properties of Hodge-Deligne polynomials that we will need
in the following chapter.

Theorem 8.0.5. ([D3, proposition 8.3.9], see also [MOVG, theorem 2.2]) Let X be a complex
variety. Let us suppose that X is a finite disjoint union X = 1; X;, where the X;’s are locally
closed subvarieties. Then

HD(X)(u,v) = ZHD(XZ-)(U,U).

We recall some known formulae; if not otherwise stated, a reference for them is [M)] §2].

(a) For the complex projective space P"~! we have

1-— (uv)”

DPn_l -1 2 n—1 _
HD( ) +uv + (uv)” + - - + (uv) o

(b) For the affine space C" we have

HD(C") = (uv)™.

(¢) If we denote by J9C the d-th jacobian of any smooth projective irreducible complex curve
C of genus g, then

HD(JIC) = (1 + u)? (1 +v)’.

(d) The Hodge-Deligne polynomial of the Grassmannian Gr(k, N) is given by

(1= ()R (1 — (uw)N"H)(1 = (w)N)
HD(Gr(k,N)) = (1= uo) - (1 — (w)F1)(1 — (wv)¥)

This formula is still correct when N < k, since in this case the Grassmannian is empty
and the previous expression is equal to zero, that is the Hodge-Deligne polynomial of the
empty scheme.
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(e) For any pair of integers k, N, let us define

F(k,N):={(v1,--- ,vx) € CV s.t. the v;’s are linearly independent in C}.

By the proof of [MOVG2, lemma 2.5|, we get that

HD(F(k,N)) = ((wo)"™ = (u0)*71) - (wo) = uv)((wo)™ — 1) =
= (uwo) V2 ((wo) VT 1) (o)M= ) (w0) - 1),

(f) Let us suppose that 7 : Z — Y is an algebraic fiber bundle with fiber F' which is locally
trivial in the Zariski topology, then

HD(Z) = HD(F)-HD(Y).
In particular this is true for Z = F x Y.

(g) Let us suppose that 7 : Z — Y is a map between quasi-projective varieties which is a
locally trivial fiber bundle in the usual topology, with fibers given by projective spaces
F =PN for some N > 0. Then:

HD(Z) = HD(F) - HD(Y).

(h) Let M be a smooth projective variety. Consider the algebraic variety Z = (M x M) /Zo,
where Zg acts as (z,y) — (y,z). Then by [MOVG2, lemma 2.6] the Hodge-Deligne
polynomial of Z is:

HD(Z)(u, v) = %((HD(M)(U,UW FHDOM) (2, 7).

We also state and prove a lemma on the same lines as [MOVG2, lemma 2.6 in the case
when we have an action of the symmetric group Ss.

Lemma 8.0.6. Let M be a smooth projective variety. Let us consider the algebraic variety
Z = (M x M x M)/Ss, where S3 acts by permutations. Then the Hodge-Deligne polynomial
of Z is given by:

1 1 1
s (HD(M)(u, v))% + 5fHD(M)(—u?, —v%) - HD(M)(u,v) + gHD(M)(ug‘, v?).
Since we are assuming that M is smooth and projective, then h?4(H*(M)) = 0if p+q # k.
So the same is true for Z = (M x M x M)/Ss; hence

HD(M)(t,1) = <(P2(0)° + 3 Po(~) - Pa(t) + 3 Po()

6 3
is equal to the Poincaré polynomial of Z, in agreement with the formula given at the end of
[Mac].
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Proof. The cohomology of Z is given by
H*(Z) = H*(M x M x M)% = (H*(M) ® H*(M) @ H*(M))%.
This is an equality of Hodge structures. Since M is smooth and projective, the Hodge
structure of M is of pure type, so also the Hodge structure of Z is of pure type. Moreover,

for all (p, q) € N3:
S3

@ HPYO (M) @ HP2%2 (M) @ HP*93 (M)

p1+p2+p3=p
q1+492+4a3=q

Now let us describe what is the action of S3 on such a space.
(piy Gi)i=1,23 and let us denote by o' any object in HP#:% (M). Then

HP(Z) =

Let us fix any triple

(12)a! @ a? @ o = (=1)Pra)P+e) g2 g o1 g P

and

(23)al @ a? @ ad = (—1)PrHe)Eta)al @ 03 @ o2,

Since the cycle (13) can be obtained as the composition (12) o (23) o (12), we have:

(13)a' @ a?®a® = (12) 0 (23)(=1)PrFa)P+a) 02 ¢ ol @ o =
= (12)(=1)Prra)p2ta)+eita)psta3) o2 @ o3 @ ol =

— (_1)(P1+IJ1)(p2+lJ2)+(P1+Q1)(P3+Q3)+(p2+Q2)(p3+Q3)a3 ® o2 ® ol

Analogously, the cycle (123) can be obtained as the composition (23) o (12), so we have

(1 23)041 X a2 (%) a3 = (2 3)(_1)(p1+tI1)(p2+tI2)a2 Q 041 ® ag _

= (=1)Prra)Eta)trita)ps+e) 2 @ o3 @ ol

Moreover, the cycle (132) can be obtained as the composition (12) o (23), so we have:

(132)a! @ a2 ®ad = (12)(~1)P2r@)Fta)gl © 03 @ o2 =

= (_1)(p2+qz)(p3+q3)+(p1+q1)(p3+q3)a3 ® ol ® 2.

Now for every triple (p;, ¢;)i=1,2,3 and for every o € S3 let us define sgn(o, p1, ¢1, 2, @2, P3, 3)
as +1 or —1 according to the previous description. For o = id we set sgn(o,---) =1 Then for
every triple a; for i = 1,2, 3 as before, we get that the object

f(Oé17 a27 a3) = Z Sgn(07plu q1,P2, 492, P3, QS)CYU(I) ® 050-(2) & ao’(3) (87)
c€S3
is invariant under the action of Ss. If (p;, ¢;) # (pj,q;) for every i # j € {1,2,3} and if every

o' is non-zero, then this object is also non-zero. If some of the (p;, ¢;)’s are equal, we will give
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a more precise description below.
Now let us define the following spaces.

o If we fix any unordered triple (p;, g;i)i=1,2,3 such that (p;,q;) # (pj,q;) for all i # j €
{1,2, 3}, then we set

Hpy ar oo s = @ HPo)80) (M) @ HPo %) (M) @ HPo®)%@) (M).
og€ESs3

e For every pair (p,q) we define

Paq . __
Hl T @ Hp17Q17p27Q27P3,Q37

(p1,91)+(pP2,92)+(P3,93)=(p,q)
(p1,91)<(p2,92)<(P3,q3)

where we use < to denote the strict lexicographic order.

e For every ordered pair (p;, ¢;)i=1,3 such that (p1,q1) # (p3, q3) we set

Hy, q1.ps g5 7= HPV T (M) © HPV (M) © HP® (M)

@le#h (M) ® Hp37q3 (M) & Hp17q1 (M) P Hps,q3 (M) & leﬂl (M) X lev‘h (M)

e For every (p,q) we define

Pq .__
H2 T @ leﬂh,p&%‘

(2p1,2q1)+(p3,93)=(P;9)
(p1,91)#(P3,93)

e For every (p1,q1) we set

Hy, g = HPY (M) @ HPYO (M) @ HPY9 (M)

e For every (p,q) such there exists (p1,q1) with (3p1,3q1) = (p, q), we set HY? := Hp, 415
in the opposite case we set HY'? := {0}.

Then we get that

HP#J(Z) — (vaq D Hqu D Hg,q)Ss _

= @ (Hp1,Q1,P2,tI2,P37Q3)S3 @ @ (Hpum,m,qg)&a @(ng)SB'

(p1,91)+(P2,92)+(r3,93)=(P,q) (2p1,241)+(p3,43)=(p,q)
(p1,91)<(p2,92)<(p3,93) (p1,a1)<(r3,93)

Now let us describe a basis for the Ss-invariant parts of all these spaces.
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e Let us suppose that (p;,q;) # (pj,q;) for i # j € {1,2,3} and let us denote by o' any
non-zero object in HP#%(M). Then every object of the form (8.7)) is invariant under the
action of S3 and non-zero. Therefore, if we write hPi-% := dim HP»% (M) for i = 1,2, 3,

then any base for (Hp, 41 ps.gops.gs)® has cardinality

hP1,q1 [, P2,92 |, P3,43

Since H"? is defined as the direct sum over all Hp, g1 py.gaps.gs Such that (p1,q1) <
(P2, 42) < (p3,43), then we have that

dim(Hf7q)S3 = Z RP1:41 |P2,92 |,P3,43 —

(r1,91)+(p2,92)+(p3,93)=(r,q)
(p1,91)<(p2,92)<(P3,33)

= — E hm,lh hp2¢12 hp3¢13'

(p1,91)+(P2,a2)+(P3,93)=(P,q)
(p3,9;)#(pj,a5) for i)
o Let us suppose that (p1,q1) = (p2,2) # (p3,g3) and let us assume that {a} };=1,... pr1.a
is a basis for HPV'(M) = HP2% (M) and that {a%}kzl,-n,hpsﬂg is a basis for HP393,
Then the family

{f(aj,af,ad)} imseq, o wrmy
ke{l, - P393}

is a partial basis for (Hp, 4, ps.qs)>?. Since the pair (4,5) (with i # j) is an unordered
pair, the cardinality of such a set is

hp1,q1 (hphql — 1)
2

hPS’q3 .

2

Then we need also to consider what happens when i = j: if we set a! = a? := al-l and

3

a’ =: a% for some i, k, then the previous identities give the following results.

(12)a} ®al ® o} = (-1)P )l @ of ® of,

(23)a) ® af @ af = (~1)PrFEstelal @6l @ ol

(1 3)0%1 ® all Q O‘% — (_1)(p1+q1)(p1+q1)+(p1+q1)(p3+q3)+(p1+q1)(p3+q3)a2 ® azl Q Oézl —

— (_1)(1714'(11)&% ® O‘zl ® ail'

(1 23)%1 ® ail ® a% — (_1)(p1+q1)(p1+q1)+(p1+q1)(p3+q3)all ® a? ® a?.
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(132)a) @ a} ® ap = (—1)(pl+ql)(P3+q3)+(p1+‘11)(p3+‘13)a% Qo @al = Qa Da;.

So in order to get a non-zero invariant form out of o and a% the only possibility is to
assumme that (p1 + ¢1) is even. In that case the object

o @ap o @A ®a; +al®a; ©a;

is non-zero and Ss-invariant. So we conclude that a basis for (Hp, 4, ps.qs)°° has cardi-
nality

hP1,4q1 (hmm _ 1)
2

hP3:93
if p1 + ¢1 is odd and

hP1,4q1 (hpl 91 1)

5 hp37q3 + hplﬂl hp37Q3

if p1 4+ q1 is even. A formula that takes into account both cases at the same time is given
by

(hpra )2hp3,qs
2

hP1,41 hP3,43

-1 p1t+q1
+(-1) 5

Since HY? is defined as the direct sum over all Hy, 4, ns 45 Such that (p1,q1) # (ps, qs),
then we have that

. hP1,41)2 pP3,43 hP1:41 {P3:43
dim(HJ)% = > (( O — ) -
(2p1,2491)+(p3,93)=(P;9)
(p1,91)#(p3,93)
1 S| .
. Z BPLALpP2,42 P393 | — Z (_1)p1+q1 BP1:A1 P393
6
(p1,91)+(P2,92)+(p3,93)=(P,9) (2p1,291)+(p3,93)=(p,)
(;:93)=(Pj,95)#(Pk k) (p1,91)#(P3,43)

Let us assume that (p1,q1) = (p2,¢2) = (p3,q3) and that {a}}i=1.. pria is a basis for
HPo0 (M) = HP>% = P393 (M). Then the family

{f(ai, Of}a O‘llc)}iyéj;ék,i;éke{l,m hP1a1}

is a partial basis for (Hp, 4, )% = (ngl’?’ql)s?’; since the order of 7, j, k is not important,
the cardinality of such a set is equal to

hP1:41(pP1A — 1)(RP1O — 2) (hp1,q1)3 - 3<hp1,q1)2 + 9hPLA

6 6
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If some (possibly all) indices i, j, k are equal, again we can get a non-zero invariant if
and only if p; 4+ ¢1 is even. In that case we will have to take into account objects of the
form

al®a;Rap+al @ar@a; +ap o @a; (8.8)

for all i # k € {1,--- , APV} and

ol ®a; ®@a) (8.9)

for all possible values of i. Since ¢ and k don’t play the same role in (8.8), then the
number of objects of type (8.8) or is equal to

hp17QI(hp17(11 _ 1) 4 pPLa — (hp17q1)2

So if p1 + ¢1 is odd, then the dimension of (Hp, 4, )% = (H§p1,3q1)53 is equal to

(hp1,q1)3 — 3(hp1,q1)2 + QP11
5 .

If p1 + ¢1 is even, then the dimension is given by:

(hp1,Q1)3 — 3(hp17q1)2 4 QhPLA

h P19 2'
; + (W)

A common formula for both values is the following

dim(H§p1’3q1)53 = (hpl(;ql)g + (—1)prta (hPIQ’QI)Z n hp;’ql .
By summing everything we get:
HD(Z)(u,v) = Y WP Z)uPv? =
(r.9)
= % Z RPLAL yP2,02 P33 P1+P2+P3 @1 Ha2 3

(p1,91),(p2,92),(P3,93)

P1,41 ,P3,43
4 E (_1)p1+Q1h 2h w2P1tP3,,2q1+as +% E P11 ,3P1 4,30 —

(p1,91),(p3,93) (p1,91)

- é(?—lD(M)(u,v))?’ + %HD(M)(—uQ, o) HD(u, v) + %Hp(u%i%).
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If d is odd, then the Hodge-Deligne polynomial of the moduli space M(2,d) = M*(2,d) =
M?#5(2,d) of stable vector bundles of rank 2 and degree d can be found, for example, in [MOVG|
proposition 8.1]:

(14 u)9(1 4+ v)9(1 + u?v)9(1 + uv?)9 — (uv)9(1 + u)?9(1 + v)9

(1 —wv)(1 = (uv)?) '

If d is even then the Hodge-Deligne polynomial of M*(2,d) can be found in [MOVG2,
theorem Al:

HD(M(2,d)) = (8.10)

1

HDM(2,d)) = 53— ST = (o))

(2(1 +u)9(1 +v)9(1 + u?0)9(1 + uv®)I+

— (1 +u)?(1+0)21 4 2099 —u20?) — (1 —u?)?(1 — 0?91 — uv)2>. (8.11)

Since these polynomials do not depend on d, but only the parity of d, we denote them by
HD(M(2,0dd)) and HD(M (2, even)) respectively.

If d # 0 mod 3, then the formula for the Hodge-Deligne polynomial of M (3,d) = M*(3,d)
can be obtained by combining lemma 3 and corollary 5(b) in [EK] and is given as follows.

HDM(3,0) = (14 0(1+ )0 s

((1+ uw?03)9(1 + w30?)(1 4 uwv?)9(1 4 uv)I+
—u? TP 4 w)* (14 w)? (1 + 0)9 (1 + wo®)9 (1 + w?v)I+
+uP9 31+ + w?0?) (1 + u) (1 + v)%) . (8.12)

There is a similar formula in [M], theorem 1.2] but some of the signs are different. The au-
thor confirms that those signs are wrong and that the version in [EK] should be the correct one.

We recall also 2 results about moduli spaces of stable pairs (holomorphic triples). We
recall that for every coherent system (F,V') of type (n,d, 1) we can associate an holomorphic
triple (E1, B2, ¢) of type (n,1,d,0) with Es = Oc®V. Whenever (E, V) is stable for a certain
value of «, the corresponding triple is stable for an associated value of the stability parameter
o, and conversely. The values of the stability parameter o for which the moduli spaces N, of
o-stable holomorphic triples are non-empty consist of an interval [o,,, 0], and we have the
following results.

Proposition 8.0.7. ([MOVG, theorem 6.2]) Let C be a smooth projective curve of genus g > 2
and let us consider the moduli space Ny, = N (2,1,d1,ds), for a non-critical value o > opy,.
Set dy = %(0 +d; + d2>—|. Then the Hodge-Deligne polynomial of N, is

HD(N;) = coeff (1 —u0)(1 = 2)(1 — woz)zh—G—d

(14w (14+0)29(1 +ux)? (1 +vz)9 [ (uv)Pr—d—do  (yp)—dritg—1+2do
1= (uv)~lzx 1— (uwv)2x
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Proposition 8.0.8. ([M, theorem 6.5]) Let 0 > o, be a non-critical value. Set ng =
(%{"dﬂ and fg = 2| "6 | Then the Hodge polynomial of Ny = N, (3,1,d1,d) is

HD(No) = (1+u)*?(1+ )™ cocft (1@ B0 )_9%;;3212 |

_ ((uv)2d1_2d2_2"0m”0  (up)P9m 2 2dutSnogno > (14 w?0)I(1 +uv®)d — (wv)9(1+u)9(1 + v)9+
1— (uv)~2z 1— (uwv)3z (1 —uv)?(1 — (uv)?)

(uv)gfl(l 4 u)g(l 4 U)g (uv)2d172d272ﬁ0+1xﬁ0 (uv)2g7272d1+3ﬁ0xﬁ0
(T —w0)?(1 + ) ((1 —(wo) ) (1 = (w)12) | (1 = (w)PPa)(1 = (w)z)

O
(= (wo)2)(1 = (w) )

We will need also some results from [GM] about some moduli spaces G(n, d, k) of a-stable
coherent systems for « large.

Theorem 8.0.9. [GM, theorem 8.19] The Hodge-Deligne polynomial of the moduli space
Gr(n,d, k) for (n—k,d) = (2,d) =1 is

(14 u?0)9(1 + uv?)9 — udv9 (1 + u)9(1 + v)9
(1 —uv)(1 — u?v?) '

HD(Gr(n,d, k) = (1 +u)?(1 +v)? -

(1 — (up)2=DHd=htly (1 — (yp)2le=D)+d)
(1—wuv) ... (1= (uv)k)

A formula for Gr(n,d, k) for (n —k,d) = (2,d) # 1 appears in [GM| theorem 8.20], but it
seems that it is incorrect. A corrected (and still unpublished) version of that formula by the
same author is known in the case n = 3. We are not going to use this formula, we will only
compare it with our approach in a special case, described below.

Theorem 8.0.10. (Cristian Gonzalez-Martinez) The Hodge-Deligne polynomial of the moduli
space Gr(3,d,1) for d even and g > % 18:

HD(Gp(3,d,1)) = u%(sl(:q;u_)gf)l?)m)i 5 (o) ™91 + (1 +0)7+

—(u)H39I2(1 4 )9 (1 + v)9 + (w0) (=1 + (w)? — (uw)?(1 + w)?(1 4 v)9)+
+(uv) 229 (1 — (u)? + (u0)9(1 4+ u)9(1 4 v)9) + (= (uv)¥ 22953 4 (yo)d/2H39+3 4
—(uv) P21 )9 (1 +0) — (1 + u?0)9(1 + uv?)9)+
—(u0) Y229 (1 4 (w)? — (14 u)9(1 4 v)7 — (uwo)¥?(1 + u?0)I(1 + mﬂ)g)).

As a corollary of this theorem, the following explicit formula is known.
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Corollary 8.0.11. (Cristian Gonzalez-Martinez) The Hodge-Deligne polynomial of the moduli
space Gr(3,2,1) for g =2 is given by

=14 2u+ 2v + u? + v? + 6uv + 8uv + S8uv? + 6uv + 6uv® + 21uv? + 2utv + 2uv* +
+26u30? 4 26120 4 50030 + 17uv? + 17u?0* + 52uv® + 52u3v* + 6uPv? + 6uv®+
+ubv? 4 28uPv? 4 T4utv* 4 28u3v® + w4 6ulud + 6B’ + 52uPvt 4 52utvP+
+17ubv* + 1700 + 50650 + 26150 + 261508 + 2uTv* + 20t ™ + 216508 + 6uTVO+
+ 6uSv” + 8u"v® 4 8ubv” + 6uv” 4+ uBv® 4+ ub® + 260" + 2uTV® + uBe® (8.13)

and therefore the Poincaré polynomial of the moduli space G1(3,2,1) for g = 2 is given by

Pg, 321y (t) = 1+ 4t + 8> 4+ 16t° + 33t* + 56t° + 85¢° + 116"+
+1328 + 116t 4 84¢19 + 56t 4 33¢12 + 1613 4 814 4 4415 4 ¢16.

We will need also to use the Hodge-Deligne polynomials of the moduli spaces G(«;1,d, 1)
for d > 0 and any a € R>(. Since there are no critical values for (1,d, 1)), those spaces are
usually simply denoted by G(1,d,1). If d is bigger than zero, we use the following lemma:

Lemma 8.0.12. For every positive integer d and for every positive real number o, we can
identify G(a;1,d,1) = G(1,d, 1) with the symmetric product c@,

If the genus ¢ is equal to 0, this is proposition 2.1 in [LN].

Proof. First of all, we recall that for every positive integer d there exists a well-known mor-
phism, the Abel-Jacobi map:

AJ: 09 s Jio

that associates to every effective divisor D = P; + - - - + Py of degree d the line bundle O(D).
Then for every line bundle L of degree d, AJ (L) is the set of effective divisors D such
that L ~ O(D). Now every such D is in bijection with a section s # 0 of L, up to scalar
multiples, i.e. it is in bijection with a subvector space V' C H°(L) of dimension 1. Therefore,
we can identify the points of C(?) with coherent systems (L, V) of type (1,d,1). Now each
such coherent system is automatically a-stable for every positive real number «, so we get the
required identification. O

Now we recall that by [M, §2], for every smooth projective irreducible curve C' and for
every d > 1, the Hodge-Deligne polynomial of the symmetric product C@ = SymIC is given
by

HD(C'?D) = coeft (1 +uz)?(1 + Um)gx_d.

20 (1—2)(1 — uvzx) (8.14)
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Then this formula computes the Hodge-Deligne polynomial of G(1,d, 1) whenever d > 1.
When d = 0, then the only coherent system (E,V) of type (1,0,1) is (O, H*(O) = C) since
a line bundle of degree zero has sections if and only if it is the trivial line bundle. Such a
coherent system is a-stable for every a € R>q, so G(a; 1,0, 1) consists of a single point. So

HD(G(a;1,0,1)) = HD(C?) = (wv)° = 1.
Now let us consider the right hand side of (8.14]) for d = 0. In this case the function

(1 +ux)9(1 + vz)9
(1 —2)(1 —uvx)

fx) =

is holomorphic near x = 0, therefore

(1 + ux)9(1 + vx)d
oot A= = woa)

So using the previous lemma for d > 1 and this remark for d = 0, we get that:

— £(0) = 1 = HD(G(a: 1,0,1)).
Lemma 8.0.13. For every a € R>q and for every non-negative integer d, the Hodge-Deligne
polynomial of G(a;1,d,1) = G(1,d,1) is given by:

) = coe (1 + uz)?(1 + vz)z?
HD(G(a;1,d,1)) = IOH (1—-2)(1—uvx)




Chapter 9

Results on Hodge-Deligne polynomials

In this chapter we summarize the results that we were able to obtain about the Hodge-
Deligne polynomials of some moduli spaces of coherent systems, listed below. For the proof
of each result, see part II of this work. Unless otherwise stated all the results of this chapter
hold for moduli spaces of (semi-)stable coherent systems over a smooth projective irreducible
curve C of genus g > 2 over C.

9.1 The Hodge-Deligne polynomials of G(«;2,d,1)
Theorem 9.1.1. (theorem corollary and corollary . Let us fix any posi-

tie integer d; then the non-zero actual critical values for the triple (2,d,1) are all of the form
alk) =d —2k for 0 < k < d/2. For any such k we have that

HD(G(a(k)";2,d,1)) =

_ (A +u)f(d+0)f coeff (14 uz)?(1+v)9 [ (wo)rz™  (w)otd=1-2ky=k
1—wuv 2 (I1—2)1—wz) [1—z(uv)? 1 — z(uv)?

Moreover, the Hodge-Deligne polynomial of the stable locus at any critical value

G*(a(k);2,d,1) ~ G(a(k)T;2,d,1) ~ G (a(k);2,d,1) ~
~ G(a(k)7;2,d,1) ~ G (a(k); 2,d,1)
is given by:
(Ltupf(Lto) o (1 ur)(lfor).
1—uw 20 (1—2z)(1 —uvz)

(uv)kxfk (uv)g+d+172kxlfk
1—z(uw)t 1 — z(uv)?

HD(G*(a(k); 2,d,1)) =

— x_k

In addition, if

d>49g—4 and 29—2<k<d/2

161
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then

HD(G(a(k);2,d,1) =

_ (1@ :;)‘3?51_+(3]g)2) [ o) () — )+ 4 (3701

—(uv)ﬁd*lf%} S+ W)L+ 0)T 41— (w0) 2291+ w0)9(1 + mﬂ)g} .

Remark 9.1.1. The first formula agrees with that given in [M proposition 5.4] up to a mul-
tiplicative term (1 + u)9(1 + v)9, once we set in that formula dy := d, do := 0, dp; := d — k.
This makes sense because in [M] the moduli spaces of triples are studied and such moduli
spaces can be considered as fibrations over corresponding moduli spaces of coherent systems,
with fibers isomorphic to a Jacobian. The Hodge-Deligne polynomial of the Jacobian (for any
degree) is exactly equal to (1 4+ u)9(1 + v)9.

The last formula of the previous theorem gives also the following results for the moduli
space with stability parameter small.

Corollary 9.1.2. (corollaries|13.4.3 and|13.4.4)) If d is odd and d > 4g — 4, then

HD(Go(2,d,1)) = (1(i Z;;gxl_+(zz)g)2) {[(uv)dJrQ—g - (uv)g} :

(L4 w)(1+0)9 4 [1— (uo)229) (1 + u20)9(1 + mﬂ)g} .
If d is even and d > 49 — 4, then
(14+u)9(1+v)d

HP(Go(2.4,1) = =31~ (aol?) {[1 — (u)2729) (1 + u20)9(1 + uv?)I+

d
2

—[(0) £ (1 = (w0)?) + () (1 = (o)) (1 +u)9(1 +0)7}.

Remark 9.1.2. The first polynomial coincides with

HD(M(2,d)) - HD(P4T1729),

so this agrees with the known fact that if d is odd and d > n(2¢g —2) = 4g —4, then Go(2,d, 1)
is a grassmannian fibration over the moduli space M (2, d) of stable rank 2 bundles of degree
d, with fiber over any vector bundle E given by

Grass(lv X(E)) = Grass(l, HO(E)) = Grasg(]_’ d + 2(1 _ g)) — Pd+172g.

Here the first identity comes from the fact that H'(E) = 0 for d > 4g — 4, while the
second one is Riemann-Roch. For the Hodge-Deligne polynomial of M (2,d), see (8.10). We
also remark that the leading term of the second polynomial coincides with the leading term

of (8.11) times HD(PI+1-29).
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Remark 9.1.3. The previous results (that a priori are valid only under the hypothesis g > 2)
agree with the known literature for the cases ¢ = 0 and ¢ = 1. When g = 0, the Hodge-
Deligne polynomials of the moduli spaces G(«;n,d, 1) for all n and for all o non-critical for
(n,d,1) were computed in [LN|. Moreover, the Hodge-Deligne polynomials of the moduli
spaces G(a;2 + ad,d, 1) (for any non-negative integer a) for ¢ = 1 were computed in [LN2].
In section we will prove that the formulae of the previous theorem are valid also in the
cases when g = 0 and ¢g = 1, by comparing them with the formulae of [LN] and |[LN2].

9.2 The Hodge-Deligne polynomials of G(«;3,d, 1)

Let us fix any positive integer d; then the non-zero actual critical values for the triple
(3,d,1) are all of the form «(k) = (d — 3k)/2 for 0 < k < d/3. For any such k we have 2
different expressions for the Hodge-Deligne polynomials of G(a(k);3,d,1) depending on the
parity of d — k. For the last moduli space we have the following expressions:

Proposition 9.2.1. (propositions|14.5.5 and|14.3.4) If d is odd, then:

HD(G(a(0)7;3,d,1)) = (1 _ (uv)29—2+d) .

(1+w)9(1 +v)9(1 +u?v)9(1 4+ uv?)9 — (uv)9(1 + u)?9(1 + v)%
(1 —w)?(1 = (uwv)?) '

If d is even, then

HD(G((0)753,d,1)) = (1 +u)?(1 + v)g{[l — (uv)29-2+).

(14 u?0)9(1 + uv?)9 — (uv)9(1 + u)9(1 + v)9+
(1 = uv)?(1 = (w)?)

Moreover,

Theorem 9.2.2. (theorem For every d > 0 and for every critical value

alk)=(d—-3k)/2, 0<k<d/3

the following formula holds:
(1 +ux)?(1 +vx)?

(1 —2)(1 —uvx)

. { (14 u?0)9(1 + uv?)9 — (uv)9(1 + u)9(1 + v)9 _ ( (uv)?kg =k
(1 —uw)?(1 — (uv)?) 1— (uv)—2z
(uv)2972+d73kw7k (uv)gfl(l +u)g(1 +v)g (uv)2d*4lo+1x2107d

11— (w)dx ) (1 —uv)?(1 4+ uwv) ' <(1 — (wv)~22)(1 — (uv)~1z) +

HD(G(a(k)";3,d,1)) = (1 +u)?(1 + v) coeff
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+ (1 — (uwv)3x)(1 — (uv)?x) B (1 — (uwv)~la)(1 — (uv)3z)

where ly := [(d — k)/2].

(uv)29_2_2d+610x210_d (1 4 uv)(uv)g_l'HO:CQlo_d >}

Moreover, we have the following results for the stable locus at every critical value.

Proposition 9.2.3. (corollaries|14.5.6| and [14.3.7). For every critical value a(k) such that
d — k is odd, the following formula holds:

S0 (1) _ (1 + uz)?(1 + va)d
HD(G*(a(k);3,d,1)) = (1 (1 +v)? couff =5

. { (1+ w0)(1+ w?)? — (uo)?(1+u)9(1 +v)9 < (uv)2z—F
(1 —ww)?(1 = (wv)?)

B (up)29+1+d=3kg 1=k B w_k> N (uwv)9 (1 +u)9(1 + v)?
1— (w)3z (1 —uv)?(1 4 o)

(uv)2k—1g1=k (uw)29+d+1-3k 1k
' ((1 — (uv)?2)(1 — (uv)~ ') * (1 — (uwv)3z)(1 — (uv)2x)+

(1+ uv)(uv)g—1+(d—k+1)/2$1—k
_G—WW%ﬂﬁwW)>}

For every critical value a(k) such that d — k is even, the following formula holds:

HD(G*((k);3,d,1)) =

= u)? v)Y coe (L+uz)?(1 + o) (1+v*0)9(1 +uv?)? — (u)9(1 +u)9(1 +v)?
=(1+u)(1+v) IOH (1 —2)(1 —uvx) { (1 — wv)2(1 — (uv)?)

. < (uv)?kg=Fk (uw)?9t1+d=3kg1-k B :L‘k> N (uv)9 (1 +u)9(1 +v)9‘

1— (w) 2z 1 — (uv)3z (1 —uw)?(1 4 uv)

(uv)Qk—i—lx—k (uv)29+d+4_3km2_k (1 +uv)(uv)g+1+(d_k)/2xl_k
' ((1 —(wo)22)(1— (w) 7)) | (1= (@)1= (@0)2z) (1= (w) @)1 — (w)z)

_umk> (A 4uw)r(d+ov)?

(uv)kx_k (uv)9+1+(d_3k)/2x1_k e
(1 —uv)? — '

1— (w)lz 1 — (uv)?x

Remark 9.2.1. The formula presented in theorem agrees with that presented in [M]|
theorem 6.5] for the moduli spaces of triples, up to a multiplicative term (1 +u)9(1 4 v)9 (see
remark [9.1.1)) once we set in that formula dy :=d, da := 0, ng := d — k, so that

5 = 2[(no + 1)/2) = 2[no/2] = 2[(d - k)/2] = 2lo.

Remark 9.2.2. The formula of proposition for d even coincides with that given in (8.13])
in the case when d = 2 and g = 2; see the computations after proposition [14.3.4]for the details.
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9.3 Some results on the polynomials for G(«;4,d,1)

As we said in the introduction, currently we are not able to get a formula that holds in
full generality. Indeed, in order to cross some of the critical values for (4,d,1) we need to
compute 50 polynomials associated to various subloci; at the moment we are able to compute
only 42 of them (we don’t list all of them here, we refer directly to the detailed computations
of chapter . For large values of o (and d #3 0), this is enough to get explicit results, but
in general we are not able to conclude. The non-zero actual critical values are all of the form

0<j<d/2, [j]€{0,2,4,2d+4 3}mods ={2d,2d +2,2d + 3,2d + 4} mod 6-

We have complete results whenever we cross actual critical values «(j) with [j] € {2d +
2,2d + 3,2d + 4}mod 6; we don’t have a complete formula for the case when j =¢ 2d. To be

more precise,

Lemma 9.3.1. (formulae (15.10) and (15.11])) If j is equivalent to 2d + 3 modulo 6, then

HD(G™ (a(j);4,d,1)) = HD(G T (a(j): 4,d, 1)) =

(14 u?0)9(1 + uv?)9 — (uwv)9(1 + u)9(1 + v)9
(1 —wv)3(1 — u?v?) '

'(1 + u)29(1 + 1})29 . |:(uv)29—2+j _ (uv)4g—4+(2d—4j)/3] .

1—z(uv)~! 1 — z(uv)?

- coeff

20 (1—2)(1—wz)

If j is equivalent to 2d + 2 or to 2d + 4 modulo 6, then

HD(G™(a(5);4,d,1)) = HD(GT((4);4,d,1)) =
(UU)Sj/Q _ (uv)3g—3+d_2j
= @+l +v)? (1 —uv)?(1 — uv?)2(1 — udv3) '
[+ w?0)9(1 4+ w30?)9(1 + wv?)9(1 + u?v)9+

—u? 02 (1 4 ) (14 u)? (1 + 0)7(1 + uw?)? (1 + uv)9+

—j/2
3g—1, 3g—1 2.9 2% 297 (1 +uz)9(1 + vx)dz™’
+u (1 + wo + w o) (14 w)?9 (1 + v)*] C%H 0= 2)(1 = uwr)

The last non-empty moduli space Gr,(4,d,1) is the one for « = d/3 —¢ = a(0)”. As a

corollary of the previous lemma, we have:

Corollary 9.3.2. (corollary [15.4.1) Let us suppose that d #3 0. Then the Hodge-Deligne
polynomial of G(«(0)™;4,d,1) = G(d/3 — ¢,4,d,1) = G(4,d, 1) is given by
1— (uv)39_3+d

HD(G(a(0)754,d,1)) = (1 +u)?(1 +v)? (1 — uv)2(1 — u20?)2(1 — u3v3)'
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. [(1 + u2v3)g(1 + u3v2)g(1 + uv2)g(1 + u221)g—|—
—u?9 727 1 4 w)2 (1 + w)9(1 +0)2(1 4 wv®)9(1 + u?v)I+
0397397 (1 4 ww + w0 (1 +u)? (1 + ”)29} . (9.1)
Moreover, we have:

Corollary 9.3.3. (corollary If d =3 1, then (1) is not an actual critical value,
so G(a(1)7;4,d,1) = G(a(0)7;4,d,1); therefore formula gives also the Hodge-Deligne
polynomial of G(a(1)7;4,d,1). If d =3 2, then «(1) is an actual critical value and
_ (14 uw)9(1+v)9 1 — (uw)39—3+d
D 1)7;4,d,1)) = .
AD(G(a() 734, d, 1)) = T =207 | T an) (1 = 609)
(14 w0 (1 + uo?) (1 + w?) (1 + uPv) I+
—u?97 297 1 4 w)2(1 + w)9(1 +0)9(1 4 uv?)9(1 + u?v)I+

+u?9 3T (1 + w4+ w?0?) (1 + w) (1 + v)¥] +
+ (1 + w*0)? (14 uv?)? — (w)?(1 + uw)? (1 +v)9] - (1 +w)9(1 + v)9-
. [(uv)2g—1 _ (uv)4g—5+(2d—1)/3} . [1 _ (uv)g—&-(d—Z)/B} } .
Also when d =3 0 the value (1) is not an actual critical value, so G(a(1)7;4,d,1) =

G(a(0)7;4,d,1), but we don’t have an explicit formula for that space since corollary
does not hold for d =3 0.

We are able to get explicit computations also for G(«(2)~;4,d, 1) only when d =3 2; to be
more precise,

Corollary 9.3.4. (corollaries |15.6.9 and [15.7.9) If d =3 2, then «(2) is an actual critical
value and

HD(G™ («(2);4,d,1)) =

(4wl +v)? 1= (ww)373 4 [(ww)? — (w)3 T 1+ g(u+ v) 4 u]
(1 —ww)3(1 — u20?) { (1 4+ uv)(1 — udv3) '

1+ w0 (1 + o) (1 + w?) (1 + uPv) I+
—u?97 02971 4 u)2(1 + w)9(1 +0)9(1 4+ uv?)9(1 + u?v)I+
+u?9 3 (1 + w4+ w?0?) (1 + w) (1 + v)¥] +
+ [T+ w®0)(1 4+ uv?)? — (w0)?(1 + w)?(1 +v)9] - (1 +w)(1 + v)9-
. [(UU)QQ—I _ (uv)4g—5+(2d—1)/3:| ) [1 _ (uv)g+(d—2)/3:| }

Moreover if d =3 1,2, then «(3) is not an actual critical value for (4,d,1). Therefore

the previous formula gives also the Hodge-Deligne polynomial for G~ («(3);4,d,1) whenever
d =3 2.
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9.4 Some results on the polynomials for G(«;2,d,2) on a Petri
curve

Theorem 9.4.1. (theorem |16.5.1) Let us suppose that C is a Petri curve. Then for every
d > 4g — 4 and for every actual critical value
_d—=2k g d

S4+1<k< -
2’2+_<2

a(k)

the following formula holds:

k
> (o)™ = (o) UD(G(L, 5, 2)))

j=g/2+1

(I+u)9(1+wv)9
1 —wv

HD(G(a(k)"52,d,2)) =
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Chapter 10

Parametrization of objects with
canonical filtration of type (1,2) and

(2,1)

In this and in the next chapters we will see in details how to parametrize coherent systems
with ac-canonical filtration of type (1,2), (2,1), (1,3), (3,1), (2,1,1), (1,2,1) and (1,1,2). For
all but (1,2,1) we are able to give both a pointwise description (having fixed a graded) and
a global description (letting vary the graded and fixing only its type). For the case (1,2,1),
we are able to give always pointwise descriptions but we are able to globalize them only in 4
subcases among the 8 subcases we would like to get (see the details in .

Having fixed any triple (n,d, k) and a critical value «, for it, in this chapter we want to
describe how to parametrize those (E,V)’s that have a.-canonical filtration of type (1,2) or
(2,1) and that belong to Gt (ae;n,d, k) or to G~ (ae;n, d, k).

10.1 Canonical filtration of type (1,2)

Let us fix any object @3, (Qi, W;), with all the (Q;, W;)’s a.-stable coherent systems with
the same ac-slope p; let us suppose that (F,V) has such a graded at «. and that it has
ac-canonical filtration of type (1,2). Then every (E,V') that we want to parametrize sits in
an exact sequence of the form:

0— (Q1,Wh) - (E,V) LS (Q2, W2) © (Q3, W3) — 0. (10.1)

If (E,V) has ac-canonical filtration of type (1,2), then the only ac-semistable proper
subobjects of (E, V') with a.-slope equal to p are the following:

e the only ac-stable one is (Q1,W7) (if any other (Q;, W;) is a suboject, then the a,-
canonical filtration is no more of type (1,2));

e for all i = 2,3, an extension (E;i, Vi1) of (Qi, W;) by (Q1, Wh).

171
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So given any (E,V) with a.-canonical filtration of type (1,2), then (E,V) belongs to
G (ae;m, d, k) if and only if the following numerical conditions are satisfied:

L e i A A (10.2)
n mn

n1 ny+n;

If we use the fact that pa (E,V) = pa.(Ei1, Vi) for i = 1,2, then the second condition
is equivalent to

k ki

n n;

Actually, 1} implies that f;z%’;; > %, that implies the first condition of 1} So if

(E,V) has a.-canonical filtration of type (1,2), then (E,V) belongs to G*(ac;n,d, k) if and

only if (10.3) holds. Analogously, given any (F, V') with a.-canonical filtration of type (2,1),
then (E, V) belongs to G~ (ac; n,d, k) if and only if:

Vi=2,3. (10.3)

k ki

n n;

Now if we denote by u any extension like ((10.1)), we get that we can identify p with a pair

Vi=23. (10.4)

3
(a2 13) € @D Ext! (@i, Wi, (Qu, W) ).
=2

This identification gives a diagram of the following form for i = 2, 3:

@ B
0 ——— (Q1, W) (B, V) — @_(Q;,W1) —— 0 P
% &; % €; B
oy Bi
00— (Q1,Wh) — (Ea, V1) — (Qi, W;) ——— 0 i

(10.5)

where ¢g; is the embedding of (Q;, W;) in (Q2, Wa) @ (Q3, W3) for i = 2,3. Then we have the
following results.

Lemma 10.1.1. Let us fix any triple (Qi, Wi)i=123 € H?:l G; such that conditions ,
respectively are satisfied (this automatically implies that (n1, k1) # (ng, k) fori=2,3)
and let us suppose that (Q2, Ws) % (Q3,W3). Then the (E,V)’s that belong to G (ae;n, d, k),
respectively to G~ (ae;n, d, k), that have ae-canonical filtration of type (1,2) and graded ®3_,
(Qs, W;) are parametrized by P(Ho) xP(H3), where H; := Ext* ((Qi, W5), (Q1, W1)) fori = 2,3.

Proof. For every extension p = (u2, u3) with representative ((10.1)), we have that (E,V) has a
filtration of the form

0= (E(),Vb) (- (El,V1) = (Ql,Wl) C (EQ,VQ) = (E,V) (106)
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Here (E1,V1)/(Eo, Vo) = (Q1, W1) is ac-stable and (Es, V2)/(FE1, V1) = (Q2, Wa)®(Q3, W3)
is ac-polystable. Then by proposition we get, that is the a.-canonical filtration
of (E,V) (and so (E,V) has ac-canonical filtration of type (1,2)), if and only if condition
(c) of that proposition is satisfied. In our case the index ¢ is equal to 2, so (E,V) has a.-
canonical filtration of type (1, 2) if and only if for all « = 1,2, 3 and for all non-zero morphisms
vi + (Qi, W;) — (E,V) we have 8 o~; = 0. Now by hypothesis (Q1, W1) 2 (Q;, W;) for all
i = 2,3. Since all the (Q;, W;)’s for i = 1,2,3 are a.-stable of the same slope, then for all
7 : (Q1,W1) — (E,V) we have that o~ = 0. Then we conclude that for every (E,V) as
in the following conditions are equivalent:

(a) (10.6) is the a-canonical filtration of (E,V);

(b) for all ¢ = 2,3 and for all morphisms ~; : (Q;, W;) — (E, V) we have fo~; =0.
Since (Q2, Wa) # (Qs, W3), we conclude by lemma that this is equivalent to
(¢) p; #0 for i =2,3.

Now if we look at the sequence ((10.1)) we get that Aut(Qq, W1) = C* and Aut((Q2, Wa) &
(Q3,W3)) = C* x C* (because (Q2, W2) # (Q3,W3)), so this proves the claim. O

Lemma 10.1.2. Let us fix any triple (Qi, Wj)i=123 € H?Zl G; such that conditions ,
respectively (10.4), are satisfied (this automatically implies that (n1, ki) # (ni ki) for i =
2,3) and let us suppose that (Q2, W2) ~ (Q3,W3) (so this implies that (na, ko) = (ng, k3)).
Then the (E,V)’s that belong to G*(ae;n,d, k), respectively to G~ (ae;n,d, k), that have .-
canonical filtration of type (1,2) and graded ®3_,(Qi, W) are parametrized by Grass(2, Ha),
where Hy := Ext'((Q2, W), (Q1, W1)).

Proof. As in the previous proof, we get that for every (E, V) that sits in a sequence ([10.1)
with (Q1, W1) % (Qi, W;) for i = 2,3, the following facts are equivalent

(a) (10.6) is the a.-canonical filtration of (E,V);

(b) for all morphisms v : (Q2, Wa) — (E, V') we have that S o~y =0,
Since (Q2, Wa) ~ (Q3, W3), we conclude by lemma that this is equivalent to
(¢) p2,ps linearly independent in Hs.

Now if we look at the sequence (10.1)) with (Q2,W2) ~ (Qs3,W3), then we get that
Aut(Qq, Wh) = C*, while Aut((Q2, Wa) & (Q2, Wa)) = GL(2,C), so we conclude. O

Now we give a global parametrization of the objects described before, i.e. we describe fami-
lies of schemes that parametrize various types of (E,V)’s when the graded @&3_, (Q;, W;) varies
over H?:l G; and the a.-canonical filtration is of type (1,2). If we fix a graded &?_;(Q;, W;)
and we suppose that (Q2, Wa2) % (@3, W3) (and suitable numerical conditions are satisfied),
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then we know that the corresponding (E,V)’s with a.-canonical filtration of type (1,2) that
belong to G*(ae;n, d, k) or to G~ (ae; n, d, k) are parametrized by pairs (s, pg) with

Mo € P (Eth ((QQ, Wg), (Ql, Wl))) and H3 € P (Eth ((Qg, Wg), (Ql, Wl))) .

Then we need to distinguish the following subcases:

(1) the type of (Q2, W3) is different from the type of (Q3,W3): in this case every (F,V) is in
bijection with an ordered pair (uz, u3) (it suffices to decide which is the type of (Q2, Wa2));

(2) the type of (Q2, W2) is equal to the type of (Q3, W3) and (Q2, W2) # (@3, W3): in this case
every (F,V) is in bijection with an unordered pair (ug, u3), therefore the good schemes to
look at will be a quotient under the action of Zg of some schemes constructed as in (1).

Moreover, we will have to describe the case:

(3) (Q2, W) ~ (Q3,W3) (so in particular (ng, ko) = (ns, k3)): in this case if (Q1, W1), (Q2, W2)
are fixed, then the corresponding (E,V) € GT(ac;n,d, k), respectively in G~ (ae;n, d, k),
are parametrized by Grass(2, H), where

Hy == Ext!((Q2, Wa), (Q1, W1)).

The 3 cases are taken into account by propositions [7.1.1], [7.1.2 and [7.1.3| respectively. We
give below the proofs of those 3 results.

Proof of proposition [7.1.1] First of all, we consider a set of data 22 given by:

e 7 =2 i.e. we are considering a tree with only 2 leaves and an internal node;

e the invariants (n1, k1) and (ne, ko) associated to the first leaf, respectively to the second
leaf;

e any non-negative integer a such that there exists ((Q1, W1), (Q2, W2)) € G1 X G2 with

dim Ext'((Q2, Wa), (Q1,W1)) = a.

The numerical conditions ([10.3)), respectively (10.4]) prove that ki /ny # ka/ne, so (ki,n1) #
(k2,n2). Therefore by lemma for every pair of points (Q1, W) € G and (Q2, Wa) € Go

we have

Hom((Q2, Wa2), (Q1, W1)) = 0.
Then by proposition for r = 2 we get the following objects:

e a finite set of indices L2;
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a covering of G’(ac;nl,dl, ki) x G(Oéc;ng,dg,kg) = G1 x G by integral locally closed
subschemes ng with i € L2

a’

we denote by ﬁg,i, (jfm- and fr?” the various projections
composed with the corresponding locally closed embeddings; so for example:
e for every i € L2, alocally free sheaf on U 3;1»:

\

7:[3;1‘ = 8$t}rgz <(qu;i7 qg;i)*(é% W2)7 (ﬁg;ivﬁz;i)*(éh Wl)) ’
where (Ql, WZ) is the local universal family parametrized by Gy;

e projective fibrations for every i € L2:

A2 2 2 2
Qpa;i : Ra;i = P(H(z;i) Ua;i
with fibers isomorphic to P~

e extensions for every i € L2, parametrized by Rzz

0= ($2 92,)" (02 2) " (Q1 W) ©ge 02,(1) —

- (égz’]}(gz) - (@g/w@gz)*(qglzaqu)*(é2uw2) —0 (10.7)
that are universal in the sense of corollary Here Og;i(l) is the tautological bundle
of P(/H?z,z) = Rg;i'

Then we tensor this exact sequence by Og;i(—l). By lemma we get again a short
exact sequence:

0— (@le @3;1)*(152;i7ﬁ2;1)*(gh Wl) — (ggw ]}3@) ®R§ﬂ. Og;i(_l) —
5 (B B (@20 272 W) g O3, (=1) =0, (10.8)
Analogously, let us fix a set of data Z; as follows:
e 7 =2 i.e. we are again considering a tree with only 2 leaves and an internal node;

e the invariants (n1, k1) and (ng, k3) associated to the first leaf, respectively to the second
leaf;

e any non-negative integer b such that there exists ((Q1, W1), (@3, W3)) € G1 x G3 with

dim Bxt'((Qs, Wa), (Q1, W1)) = b.
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Then by proposition we get the following objects:
e a finite set of indices L3;

e a covering of G1x Gs by integral locally closed subschemes Ug’ y with j € LZ’; we denote
by ﬁg.j, (j;?.j and ﬁg’.j the various projections composed with the corresponding locally
closed embeddings;

e for every j € Lg’ , a locally free sheaf on Ug’ *

"3 1 (123 3 VoA Yy (23 23 VA Y)Y
Hb;j = gwtﬁg‘j ((Qb;j7Qb;j) (Q3aW3)7(pb;j>pb;j) (leW1)> )

e projective fibrations for every j € Lg :

23 . P3 . w3 73
with fibers isomorphic to P*~1;

e extensions for every j € L3, parametrized by Rg; =

0 — (@i i) (Biy B y)* (Q1, W) ©pg Op;(1) =
— (&3, Vi) = (85, 8iy)" (@5, 45 ;)" (Qs,W3) = 0 (10.9)
that are universal in the sense of corollary [4.3.3]

Then by tensoring by O?.j(—l) we get an exact sequence:

0= (&35 Biny)* (B35 D) (Qu. W) = (65, Vi) @y Op(=1) =
= (@i @) iy 0" (Q3. Wa) @ Ofy(=1) = 0. (10.10)

Now we let us fix any (a,b;4,j) and let us consider the following cartesian diagram con-
structed in several steps, starting from (a):

03 . 8
A 37 A 5] A 2
R i A i Rei
62 0(d) 32, () P
73 ~3
53 wb;j ~ "bsj o
bij Ua,bsi,j Usi
S O(c) L O(a) P2,
3 3 A
Rb;j .3 Ub;j .3 G

Vi Pbij . (10.11)
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By the commutativity of this diagram we get canonical isomorphisms:

(035, 03507 (335 35.)" (Pois Po) (P2ess D)™ (Qu, W) =
(93/1?92 ) (Saiir Sad) (b0 Pig)” (pblj’ﬁi’j)*(Q W) =
~ (B © P © 85 © 0350 Pg © Pi © 85y © 03)" (Qu, W), (10.12)
so we will identity these families and we will write (Q1, W) for any of them.

By pullback from Ra ,; and ]%2; j (see lemma , the sequences 1D and (|10.10f) give

rise to 2 short exact sequences of coherent systems parametrized by R, p.; ;:

0— (Q1,W1) — (?a;i,va;i) — (92, W3) — 0, (10.13)
0= (Q1,W1) = (€55, Vi) — (03, W3) — 0, (10.14)

where for simplicity we use the following notation:

Eoar Vo) = (350085885 008, ) (€2, V20 @5, (555003,) 02(-1),

(@2, W) i= (55,065,580 08, ) (8200 820" (@2 2" (Q2 W) @ O2,(-1)),
) = ( ; © 92 300 ACQL i © 92 z) (51?]7 Vlij) ®Ra,b;i,]’ (‘%g;i © ég;i) Og;j(_l)a

(Qu, Wy) 1= (%, 002,82, 002,) (6 08,)7 (@50 d8,)" (Qa W) @y OF(—1)).

Now we sum the sequences ((10.13]) and ((10.14) in order to get an extension of the form:

0= (Q1,Wh) = (Eapsigs Vapsij) = (Q2,W2) @ (Q3, W3) — 0. (10.15)

Let us fix any point (¢1,t2,t3) in ﬁasz C Gy x G x Gg and let r,7' be two points in
Ra b:ij over that point. For ¢ = 1,2,3 let us denote by (Q;, W;) the image of ¢; in the moduli
space G;. Then we can interpret r as a pair (o], []) where « is the class of a non-split
extension of (Q2, W2) by (Q1,Wi) and S is the class of a non-split extension of (Qs, W3)
by (Q1, Wh); analogously we can interpret v’ as pair ([/],[8]). If » # r/, this means that
([, [8]) # (['], [8]). Now by construction of (€ psi.j, Vapij), if we restrict to{r}xC

we get an extension

0= (Q1,W1) = (E,V) = (Q2, W2) @ (Q3,W3) = 0 (10.16)

associated to the pair ([a],[3]) and analogously for 1/, Therefore, for every pair of different
points of Ra b;i,; in the same fiber over Ua biij, the sequence 1' restricts to different pairs
of classes of extensions of a point of G x G by a point of G.
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Now let us assume that conditions 1D are satisfied and let us fix any point r € Ra7b;i,j.
Then lemma|10.1.1{proves that the corresponding coherent system (E, V) := (éa7b;i,j, Va,b;m)h«
in ((10.16)) has a.-canonical filtration of type (1,2) and it is o -stable. Using the universal

property of the scheme G(af;n,d, k), we get an induced morphism

~ U .. +.
5030, 052, c .
Wapij @ Rapij — Glagsn,d, k)

Now there is a free action of PGL(N;) x PGL(N3) x PGL(N3) on Ra,b;m, flmb;i’j and on
Ua’b;i’j. This gives rise to geometric quotients

~ ~ A~

Rapij = Rapig>  Aabiiy = Aabijs  Uabiij = Uabiisj

and to induced fibrations

¢1 : Ra’b;imj - Aa7b>i’j7 ¢)2 : Aa,b;i,j - Ua,b;i,j~

Now the morphism @, p,; ; is invariant under the action of PGL(N1)x PGL(N2)x PGL(N3),
so it induces a morphism

Wa,bi,j * Ra,b;i,j — G(Oéj; n, d> k)

The previous remark proves that such a morphism is injective. Moreover, for every point
(E, V) with properties (i)-(ii) there is exactly one pair (a,b) such that (E,V) is in the image
of some wg 4, ;. Then all the other properties stated in the claim of the proposition are simple
consequences of the proof of proposition [5.0.5]

If we assume conditions (10.4), we conclude in a similar way. O

Proof of proposition [7.1.2, There is almost nothing to prove in cases (a) and (b), since in those
cases there is no action of Zs and the induced morphisms are already injective. In cases (c)
and (d) it is clear that there is an action of Zy and that the induced morphisms are injective
only after passing to the quotient with respect to that action. The only claim that is not a
priori obvious is the existence of the local trivialization compatible with the action of Zs. We
will prove it for the case (d) and assuming for simplicity that the base space Ua,a;z‘,i described
in the proof of the previous proposition coincides with G1 x Gy x G (on that space we will
actually only be interested in the part outside the diagonal Agg, since that case will have to
be considered in the next proposition). In particular, we are assuming that there is only a
significant sequence (a, b;4,j) = (a, a;4,7). When the base space is smaller, we will have more
indices to consider (and we will have to restrict the base spaces and the top spaces according
to that), but the idea will be exactly the same.

Here even if G = G, we will use both notations since the 2 schemes will play different
roles in the product Gy x Gy x G3. If we write by X? := }?(2” and X3 := ]3522 (these schemes
are equal, but the previous remark applies), then we can write diagram ((10.11)) as follows:
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N 63 . A N
Ra,a;i,i X2 X G3 X2
42 O(d) P2 H(d) ¢
. R 3 . . . . .
XSXGQ G1><G2><G3 G1><G2
O(e) O(a)
XS .3 él X ég Gl.
@ (10.17)

Here ¢? is a locally trivial fibration with fibers isomorphic to P4~!, so there exists an open
covering {U2}aea of G1 x G and trivializations

U2 x P15 (¢0)H(T?). (10.18)

Now by identifying Go with G3 and ¢? with ¢3, we can use the same covering in order
to trivialize ¢®. We denote by {U g}ﬂe A that covering (here [ varies over the same set of the

U2’s, so we use A to denote also that set of indices). So we get trivializations:
U x Pt =5 (6% H(03). (10.19)
Then for every a, 8 € A we consider
ang = (Ug X é3) N (ﬁg X Gg) C él X GQ X ég.

This gives an open covering of G1 x Ga x Gs; since ¥? = $? x idé3 and analogously for
3, then (10.18) and (10.19) induce trivializations of )2 and ?:

A2 U2 x Gy x PO () THU2 x Gg) € X2 x Gs

Xy US x Gy x P75 (4°) 71U x Ga) € X x G,

Then we consider the following diagram:
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(U2 x G3 x PO 1)t X (Ug’ x G x Pe1)

N \\\%’ﬁ ~
-,
~ i

02

. A N ~ A 3 N A
Ug’ X Gg X R (¢3)_1(UE’ X Gz) — X3 x G
%

pr?

Gl Xégxég.

Here we have that 1&2 0320 A2 = pr?, where pr? is the composition

pr2 U2 x Gy x P 5 U2 x Gy — Gy x Go x Ga,

because A2 is a trivialization of 1,@2, and analogously for pr3. Both ¢a,p and 7, g are induced
by the universal properties of fiber products. Since both A2 and )\% are isomorphisms, using
the universal properties of fiber products we get that also 7, g is an isomorphism. Moreover,
since the sets

{(W*) 71U x G3)}aca and  {(&°) 71U} x G2)}pea
are open coverings of X2 x G5 and X3 x Gy respectively, then the sets

T =172 O A 23N —1/773 o A

Uap = (7)(Uy X G3) X, w@ynis (W7) (U x Ga)

for , 3 € A form an open covering of R and the morphisms ¢, g are open embeddings.
Moreover, by construction of pr? and pr®, we get isomorphisms

~ -1 . . . .
Unp (o) (U3 x G3 x P 1) 2 X3 (U§ X Go x PO71) 2 Uy g x PO x PO
Moreover, using the commutativity of the previous diagram, we get that such isomorphisms
are compatible with the fibration 1% o 62, therefore the previous isomorphisms are local trivi-
alizations of such fibrations (a priori we only knew that we had trivializations, here we have
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an explicit description of a possible choice of trivializations, that will be useful immediately).

Now let us consider G’l X A23: this is a locally closed subscheme of él X G’g X Gg and we
can define

M = (7 06%) 7 (G x (G x G~ Asg)) = Rl (Gxcinnm)’

since 1[12 06 is a locally trivial fibration, we get that M is a locally closed subscheme of R
and it has an open covering by subschemes of the form:

Vaﬁ = ﬁaﬁ N M.

Moreover, the previous isomorphisms restrict to isomorphisms

‘7&75 5 Vaﬁ x Pt x pot

where f/aﬁ = (A]aﬂ ~ (G’l X Aogg) (these sets are locally closed in Gy x Go ¥ Gg)

Now let us consider the action of Zy on G x G x Gs given by (z,y,y) — (z,v/,y). If we
denote by ¢ the non-trivial element of Zo, then E(Uaﬂ) = Uf;,a and 5(‘7&75) = Vgﬁa, 80 we get
that:

L4 E(Va,a) = Voz,oc;

e if a # [ and we set Wa,g = f/a”g N f/@a, then s(VAVa,g) = Wawg;

e if a # (5 and we set Za,g = (Vaﬁ U Vgﬂ) ~ Wa’g, then 5(20475) =Zug-

Then the set:

{ﬂ}lEL = {{Va,a}aeAv {Wa,ﬁ}a<,6’v {Za,ﬁ}a<ﬂ}

is a finite locally closed disjoint covering of G x (G2 x Gi3~ Ag3) and each of such subschemes
is invariant under the action of Zs. Moreover, by restricting to any such subscheme we have
a trivialization of the fibration @2 063 and that trivialization is compatible with the action of
Zy on T x P4~' x P*~1. Finally, we consider the action of PGL(N;) x PGL(Ny) x PGL(N3)
on all these schemes and we conclude. O

Proof of proposition[7.1.3. Let us denote by pi2 and ¢i2 the projections from Gy x Go to

its factors. Conditions ([10.3)), respectively (10.4), prove that (ki,n1) # (k2,n2) = (k3,ns3).
Therefore, for all ¢ € Gl X G‘g we have that

Hom ((¢}o, G12)*(Qa, Wa)i, (B9, P12)* (91, Wh)i) = 0.

Then we can apply proposition and corollary for t = 2 in order to get the
following objects:
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e for all a € N such that U, # @, a finite locally closed covering {UM}Z of

U, := {t € Gy x Gy s.t. dim Ext!((¢}s, G12)* (D2, Wa)t, (Phas P12)*(Q1, W1 )i) = a}.

e for all 7 a locally free sheaf

A~

Hayi = 5$t71r0 .(((%2’(312)*(Q27W2)|Ua;p (25,12,1312)*(QA1’W1)\UQ;1.)V

a;i

over U,.; and a grassmannian bundle

ég;a;i : RQ;a;i = GT‘CLSS(?, /}:[a;i) — Ua;i

e a locally free sheaf Mz;a;i of rank 2 over Rg;an' and a universal family of non-degenerate
extensions on the right of rank 2:

0— (éé;a;béQ;a;i)*(mQaﬁﬂ)*(Qh Wl) - (éfzgm;iv Vﬁz;a;i) -

— (AIQ;a;iv é2§a;i)*(qA/12a 412)*(Q27 WQ) ®f{2;a;. m2;a;i — 0.

[

Now if we assume conditions (10.3)), respectively ((10.4), then lemma [10.1.2| proves that for

each point r in Rg;a;i the coherent system

(E’ V) = (gRQ;a;i7 1A)]%Q;a;i)r

is af-stable, respectively « -stable. Therefore for each pair a,i we get an induced morphism
from Rg;a;z‘ to G(af;n,d, k), respectively to G(ay ;n,d, k). The rest of the proof follows the
usual pattern. O

10.2 Canonical filtration of type (2,1)

We want to parametrize all those (E, V')’s that belong to GT (a.;n, d, k) or to G~ (ae;n, d, k)
and that have a.-canonical filtration of type (2,1). Let us fix 3 ac-stable coherent systems
(Qi, Wi)i=1,2,3 with the same ac-slope p; then every (E,V) with graded @?Zl(Qi,WI) and
with a.-canonical filtration of type (2,1) sits in an exact sequence of the form:

0 = (Q1,W1) & (Q2, Wa) - (B, V) 5 (Q3,W3) — 0. (10.20)

If (E,V) has canonical filtration of type (2,1), then it has always the following proper
a.-semistable subobjects with ac-slope u:

o (Q;,W;) fori=1,2;

° (Q1,W1) ®(Q2, Wa).
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This in general is not a complete list, see lemma [10.2.1} If we look only at the subobjects
(Qi, W;) for i = 1,2, then we have that for every (E,V) with a.-canonical filtration of type
(2,1), the following numerical conditions are necessary, but in general not sufficient, in order
to have that (E,V) belongs to Gt (ae;n,d, k):

ki k
— <= Vi=1,2. (10.21)
n; n

A direct check proves that this implies % < %, so the subobject (Q1, W7) @ (Q2, Wa)
does not destabilize (E,V) for af. Analogously, the following numerical conditions are nec-
essary, but in general not sufficient, in order to have that (F,V’) belongs to G~ (ae;n, d, k):

ki k
<> Vi=1,2. (10.22)
n

n;g

Lemma 10.2.1. Given any sequence with conditions , respectively ,
then (E,V) belongs to Gt (ae;n,d, k), respectively to G~ (ae;n, d, k), if and only if there are
no quotients ¢; : (E,V) — (Qi, W;) for i = 1,2. Moreover, if this happens, then (E, V) has
ae-canonical filtration of type (2,1).

Proof. Let us suppose that we use conditions ({10.21)), the other case is completely analogous.
If there is any quotient ¢; as in the claim, then the kernel (E', V") of (; is an «,-semistable
subsystem of (E,V) with ¥’ = k — k; and n' = n — n;. Since po, (E,V) = po.(E', V'), using

/

(110.21) we get that % > %, so (E,V) cannot be «f-stable.

Conversely, if (F, V) is not af-stable, then there exists a subsystem (E’,V’) that destabi-
lizes it for o}, Using (10.21), the graded of (E’, V') cannot contain only some (possibly all)
objects of the form (Q;,W;) for i € {1,2}, so it contains (Qs, W3). Therefore the quotient
(E", V") := (E,V)/(E', V') contains only some (possibly all) objects of the form (Q;, W;) for
i € {1,2}. If we consider any a.-Jordan-Hélder filtration (E}', V/")i=1,... s of (E", V"), we get
that (E”,V"/(E}_,,V/ ) is isomorphic to some (Q;, W;) for i € {1,2}, so we get a quotient
(E,V)— (E,V)/(E", V") = (E", V") - (Qi, W;). So this proves the first part of the claim.

Now let us assume that there are no quotients ¢; : (E,V) — (Q;, W;) for i = 1,2; we
want to prove that the a.-canonical filtration of (E, V) is of type (2,1). So let us consider the
filtration of (E, V) given as follows:

0= (E(),Vo) C (E1,V1) = (Ql,Wl) D (QQ,WQ) C (EQ,VQ) = (E, V). (10.23)

Here (EQ,‘/Q)/(El,‘/l) = (Qg,Wg) is ac—stable and (El,‘/l)/(Eo,‘/o) = (El,Vl) is Q-
polystable. Then by proposition we get that is the ag-canonical filtration of
(E,V) (and so (F,V) has ac-canonical filtration of type (2,1)) if and only if condition (c)
of that proposition is satisfied. In our case the index t is equal to 2, so is the ae-
canonical filtration of (E,V) if and only if for all ¢ = 1,2,3 and for all non-zero morphisms
vi + (Qi,W;) — (E,V) we have o~; = 0. Now conditions imply that (Qs, W3) 2
(Qi, W;) for all ¢ = 1,2. Since all the (Q;, W;)’s for i = 1,2,3 are ac-stable of the same slope,
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then for all @ = 1,2 and for all v; : (Q;,W;) — (E,V) we have that S ov; = 0. Then we
conclude that for every (E, V) as in ((10.20) the following conditions are equivalent:

(a) (10.23) is the a.-canonical filtration of (E,V);

(b) for all non-zero morphisms 3 : (Q3, W3) — (E, V) we have S o3 = 0.

Now (b) is equivalent to saying that the sequence is non-split, so in order to
conclude the proof we need to verify that is non-split if we assume the conditions of
first part of the claim of lemma [10.2.1} If (10.20)) is split, then for every i = 1,2 we can write
morphisms of the form

Gt (B,V) =i (Qn,W) — (Qi, W;).

Such a morphism cannot exist in the case under consideration, so we conclude. O

Now if we denote by p any extension like (10.20), we get that we can identify p with a
pair

2
(11, 1) € D Ext! ((Qs, W3), (@1 7).
i=1

This identification gives a diagram of the following form for ¢ = 1, 2:

0— @lQ:l(levVl) L) (E,V)

(Q3, W3) —— 0 H

pri m i &% pri

0 (Qu W)~ (B, Vig) —2s (Q3, W)

(10.24)
where pr; is the quotient (Q1, W1) ® (Q2, Wa) — (Qi, W;). Then we have the following results.

Lemma 10.2.2. Let us fir any triple (Qi, W;)i=123 € H?:l G; with numerical conditions
(10.21), respectively (this automatically implies that (ng, ks) # (ni, ki) fori=1,2) and
such that (Q1,W1) # (Q2, W2). Then the (E,V)’s that belong to Gt (ae;n,d, k), respectively
to G~ (ae;n, d, k), that have graded &3_,(Q;, W;) and a.-canonical filtration of type (2,1) are
parametrized by P(Hy) x P(Hy), where H; := Ext' ((Q3, W3), (Q:, W;)) for i = 1,2.

Proof. Let us fix any extension u = (u1, u2) represented by a sequence of the form ((10.20)).
Using lemma [L0.2.1] the following facts are equivalent

(a) (E,V) belongs to G (ae;n,d, k), respectively to G~ (ae;n,d, k), and it has a.-canonical
filtration of type (2,1);

(b) there are no quotients ¢; : (E,V) — (Q;, W;) for i =1,2.
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Since (@3, W3) 2 (Q;, W;) for i = 1,2, then this is also equivalent to
(c) for i = 1,2 there are no quotients ¢; : (E,V) — (Q;, W;) such that (; o a # 0.
Now since (Q1, W1) % (Q2, W3), then by lemma we get that this is also equivalent to

(d) p1 # 0 # po.

Now if we look at the sequence ((10.20)), we get that Aut((Q1, W1) ® (Q2, Wa)) = C* x C*
(because (Q1, W1) % (Q2, W2)) and Aut(Qs, W3) = C*, so this proves the claim. O

Lemma 10.2.3. Let us fix any triple (Qi, W;)i=123 € H?Zl G; with numerical conditions

(10.21)), respectively (this automatically implies that (ns, ks) # (ni, ki) fori = 1,2),
and let us suppose that (Q1, W1) =~ (Q2, W3). Then the (E,V)’s that belong to G (ae;n, d, k),
respectively to G~ (ae;n,d, k), that have graded &3_,(Qi, W;) and a.-canonical filtration of type
(2,1) are parametrized by the grassmannian Grass(2, Hy), where Hy := Ext' ((Q3, W3), (Q1, W1)).

Proof. As in the previous proof, we get that for every (E, V') that sits in a sequence (10.20)
with numerical conditions (10.21), respectively (10.22)), the following facts are equivalent:

(a) (E,V) belongs to Gt (ac;n,d, k), respectively to G~ (ac;n,d, k) and it has a.-canonical
filtration of type (2,1);

(b) there are no quotients ¢; : (E,V) — (Q1, W1) such that ¢; o ae # 0.

In this case (Q1, W1) =~ (Q2, W3), so we can ignore in (b) the case i = 2. Since (Q1, W1) ~
(Q2,W>), then by lemma we get that this is equivalent to

(¢) p1,peo linearly independent in Hj.

Now if we consider the exact sequence (10.20) with (Q1,W1) ~ (Q2, W2), we get that
Aut(Qs, W3) = C*, while Aut((Q1, W1) & (Q1, W1)) = GL(2,C), so we conclude. O

As in the previous section, we need to globalize the constructions of lemma [10.2.2] and
of lemma [10.2.3| and we we have to distinguish between 3 cases, that are taken into account

by propositions [7.2.1] and respectively. Once we use lemmas [10.2.2] and [10.2.3|
instead of lemmas [10.1.1] and of lemma [10.1.2] the proofs are on the same line of the proofs of

propositions [7.1.1] [7.1.2] and [7.1.3| respectively, so we omit the details.







Chapter 11

Parametrization of objects with
canonical filtration of type (1,3) and

(3,1)

Having fixed any triple (n,d, k) and a critical value «, for it, in this chapter we want to
describe how to parametrize those (E,V)’s that have a.-canonical filtration of type (1,3) or
(3,1) and that belong to Gt (ae;n,d, k) or to G~ (ae;n, d, k).

11.1 Canonical filtration of type (1,3)

Let us fix any object @1, (Qi, W;), with all the (Q;, W;)’s a.-stable coherent systems with
the same ac-slope p; let us suppose that (F,V) has such a graded at «. and that it has
ac-canonical filtration of type (1,3). Then every (E,V) that we want to parametrize sits in
an exact sequence of the form:

0= (Qu,W1) > (B, V) 5 (Q2, Wa) & (Qs, W) & (Qu, W) = 0. (11.1)
Any (E,V) as in this extension has always the following proper a.-semistable subobjects

with ac-slope u:

e the only «a.-stable one is (Q1, W7) (if any other (Q;, W;) is a subobject, then the a.-
canonical filtration is no more of type (1,3));

e for all i € {2,3,4}, any extension (F;1, V;1) of (Q;, W;) by (Q1, Wh);
o for all i # j € {2,3,4}, any extension (Ej;1, Vi) of (Qj, Wj) by (Ej, Vir).

Actually, if (E, V) has a.-canonical filtration of type (1,3), then the previous list is com-
plete. Therefore, for any such (E, V) we have that (E,V) belongs to GT(ac;n,d, k) if and
only if the following numerical conditions hold:

ki ok ki+ki K
A< L<E Vi€ {234},

ni o n’ong+n,

187
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ki+kj+k k.

—_—— < — ¥ l€{2,3,4}. 11.2

S L Vi #1e (23.4) (11.2)
For every pair j,1 as before, let us denote by 4 the index in {2, 3,4} different from j and .

Then if we use the fact that pa, (Eji1, Vi) = pa.(E,V), we get that the last line is equivalent
to:

k;

ng

k
> - Vie{2,3,4}. (11.3)
Actually, if we assume this condition, then we get

Sith b vigie(osy, S2ffsth b

ni+mn; n ng+nzy+ng n
The first inequality implies the second condition of , while the second inequality
implies the first inequality of (11.2). Therefore, we conclude that given any (E,V) with a.-
canonical filtration of type (1,3), then (E,V) belongs to G (a¢;n,d, k) if and only if
holds. Analogously, given any (E, V) with a.-canonical filtration of type (1,3), we have that

(E,V) belongs to G~ (ae;n,d, k) if and only if:

ki k _
7”71‘ < - Vie {2,3,4}. (11.4)

Now if we denote by u any extension like (11.1]), we get that we can identify u with a triple

4
(o 13, 11) € @D Exct! ((Qis W), (Q1, W)
1=2

For every ¢ = 2, 3,4, this identification gives a diagram of the form:

@ B
00— (@1, W) (E\V) — @?:2(@17 W) —0 K
mn di a% [ =
a; Bi
00— (@1, W) — (En, Vi1) — (Qi, W;) ——— 0 i

(11.5)

where ¢; is the embedding of (Q;, W;) in @} ,(Q;,W;) for i = 2,3,4. Then we have the
following results.

Lemma 11.1.1. Let us fiz any quadruple (Q;,W;)i=1,...4 € H?Zl G; such that conditions

, respectively , are satisfied (this automatically implies that (n1, k1) # (ng, k;) for
i=2,3,4). Moreover, let us suppose that

(QzaWz) ¢ (Qj?Wj) fO’I‘ all i 7é ] € {27374}

(this condition can be omitted if (n;, ki) # (nj,kj) for every i # j € {2,3,4}). Then the
(E,V)’s that belong to GT (ae;n, d, k), respectively to G~ (ae;n, d, kk), that have a.-canonical
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filtration of type (1,3) and graded ©}_,(Q;, W;) are parametrized by H?:z P(H;), where H; =
Extl((Qla WZ)7 (Q17 Wl))

Proof. Let us fix any extensions p with representative (11.1). Then we have that (£, V) has
a filtration of the form

0= (E(),V()) C (El,Vl) = (QI,WI) C (EQ,VQ) = (E,V) (11.6)

Here (E1,V1)/(Eo, Vo) = (Q1, W1) is ae-stable and (E2, V2)/(E1, Vi) = (Q2, W2)®(Q3, W3)®

(Q4, Wy) is ae-polystable. Then by proposition we get that (11.6]) is the a.-canonical
filtration of (E,V) (and so (F,V) has ac-canonical filtration of type (1,3)), if and only if

condition (c¢) of that proposition is satisfied. In our case the index t is equal to 2, so (E,V)
has ac-canonical filtration of type (1,3) if and only if for all (Q;, W;) for ¢ = 1,--- ,4 and
for all non-zero morphisms 7; : (Q;, W;) — (E,V) we have fo~; = 0. Now by hypothesis
(Q1,W1) # (Q;, W;) for all i = 2,3,4. Since all the (Q;, W;)’s for i = 1,--- ,4 are a,.-stable
of the same slope, then for all 1 : (Q1,W1) — (E,V) we have that fo~; = 0. So for every
(E,V) asin the following conditions are equivalent:

(a) (E,V) has ac-canonical filtration of type (1,3);
(b) there are no morphisms v; : (Q;, W;) — (E, V) for i = 2,3, 4 such that 5 o~; =0.

By hypothesis we have that (Q;, W;) % (Q;,W;) for all j # j in {2,3,4}, so by lemma
3.3.2 (b) is equivalent to

(¢) p; #0 for all i = 2,3, 4.

Now if we look at the sequence (L1.1), we get that Aut(Q1, W7) = C* and Aut((Q2, W2) ®
(@3, W3) ® (Q4, Wy)) = C* x C* x C* (because (Q;, W;) % (Q;, W;) for all i # j € {2,3,4}),
so we conclude. ]

Lemma 11.1.2. Let us any fix any quadruple (Q;, W;)i=1.... 4 € H?:l G; such that conditions

, respectively , are satisfied (this automatically implies that (ny1, k1) # (ng, k;) for
i =2,3,4). Moreover, let us suppose that (na, ka) = (ns, k3) and

(Q2, W) ~ (Q3, W3) 2 (Qa, Wy).

Then the (E,V)’s that belong to GT(ag;n, d, k), respectively to G~ (ae;n, d, k), that have
ae-canonical filtration of type (1,3) and graded ®1_,(Q:, W;) are parametrized by

Grass(2, Ext' ((Qa, Wa), (Q1, W1))) x P(Ext' ((Q4, W), (Q1, W1))).

Proof. As in the previous proof, we get that for any (E, V') that sits in a sequence (11.1)) the
following facts are equivalent

(a) (E,V) has a.-canonical filtration of type (1,3);
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(b) there are no morphisms v; : (Q;, W;) — (E,V) for i = 2,4 such that So~; # 0.

In this case (Q2, Wa) ~ (Q3, W3), so we can ignore in (b) the case ¢ = 3. Then by lemma
[3.3.2 we get that (b) is equivalent to

(¢) pa # 0 and pg, s linearly independent in Ext!((Qz, Wa), (Q1, W1)).

Now if we consider the exact sequence (11.1)) with (Q2, W2) ~ (Q3, W3) % (Q4, Wy), then
we get that Aut(Ql, W1> = C*, while Aut((Qg, Wg) S5, (QQ, Wg) D (Q4, W4)) = GL(Q, (C) x C*,
so we conclude. O

Lemma 11.1.3. Let us fiz any quadruple (Q;,W;)i=1,..4 € H?Zl G; such that conditions
, respectively , are satisfied (this automatically implies that (ny1, k1) # (ng, k;) for

i=2,3,4). Moreover, let us suppose that (na, k2) = (ns3, k3) = (n4, ka) and that
(Q2, W2) = (Q3, W3) = (Qu, Wa).

Then the (E,V)’s that belong to GT (ae;n, d, k), respectively G~ (ae;n, d, k), that have .-
canonical filtration of type (1,3) and graded ©}_,(Q;, W;) are parametrized by

Grass(3, Bxt' ((Qa, Wa), (Q1, W1))).

Proof. As in the previous proof, we get that for any (E, V') that sits in a sequence (11.1)), the
following facts are equivalent.

(a) (E,V) has ac-canonical filtration of type (1,3);

(b) there are no morphisms s : (Q2, Wa) — (E, V) such that S o~y # 0.

In this case, (Q2, Wa) ~ (Q3, W3) ~ (Q4, Wy), so we can ignore the cases i = 3,4 in (b).
Then by lemma we get that (b) is equivalent to

(¢) po2,pu3 and py are linearly independent in Ext!((Qq, W2), (Q1, W1)).

Now if we consider the exact sequence (L1.1) with (Q2, Wa) ~ (Q3, W3) ~ (Q4, Wy), we
get that Aut(Qq, W1) = C*, while Aut((Q2, Wa) @ (Q2, W) & (Q2,W2)) = GL(3,C), so we
conclude. O

Now we give a global parametrization of the objects described before, i.e. we describe
families of schemes that parametrize various types of (E,V)’s when the graded &, (Q:, W;)
varies over 1—[;1:1 G; and the ac-canonical filtration is of type (1,3). Since the order of the
objects (Q;, W;) for i = 2,3, 4 is not important, we can assume that we have fixed any order
that satisfies the following properties:

o if (n;, ki) # (nj, kj) for i # j € {2,3,4}, then we use the lexicographic order on the set
{(ni, ki) bim2,3,45
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(1)

(6)

e if exactly 2 (n;, k;)’s are equal for i € {2,3,4}, then we assume that they are (no, k2)
and (ns, k3); by using the fact that p,,(n;,d;, k;) is the same for all i = 1,--- |4, we get
that d2 = d3;

o if all the (n;, k;)’s are equal for i € {2,3,4} (this implies that do = d3 = dy4) and if
exactly 2 among the corresponding (Q;, W;)’s are isomorphic, we order them so that

(Q2, W2) ~ (Q3, W3) % (Qs, Wy).

Let us write

H; :=Ext! (Qs, W;), (Q1,W1)) Vi=2,3,4.
Then we need to distinguish the following subcases
If (no, ko) # (ns,ks) # (n4,kq) (this implies that (ne, k2) # (n4, k4) since we are using

the lexicographic order), then having fixed the graded, the corresponding (E,V)’s are in
bijection with the points of P(Hy) x P(H3) x P(Hy).

If (n2, k2) = (n3, k3) # (na, ka) and (Qa, W2) 3 (@3, W3), then the corresponding (E, V)’s
are parametrized by Hog X P(Hy), where Hoz := (P(H2) x P(H3))/Zo.

If (ng,kg) = (ng,kg) 75 (n4,k:4) and (QQ,WQ) ~ (Qg,Wg), then H2 = H3 and the corre-
sponding (EF,V)’s are parametrized by Grass(2, Hy) x P(Hy).

Let us assume that (ng, k2) = (n3,k3) = (n4,kq) and (Q2, Wa) # (Q3,W3) (using the
hypothesis on the ordering, this implies that (Q4, W4) is not isomorphic to (Q;, W;) for i =
2,3). Then the corresponding (E,V)’s are parametrized by (P(Hz) x P(Hg) x P(Hy))/Ss.

Let us assume that (ng, ko) = (ns3, k3) = (n4, ks) and (Q2, Wa) ~ (Q3, W3) % (Q4, Wy).
Then Hy = Hj and the corresponding (E, V')’s are parametrized by Grass(2, Hy) x P(Hy).

If (ng, k2) = (n3, ks) = (n4, ka) and (Q2, W2) ~ (@3, W3) = (Q4, Wa), then Hy = Hz = Hy
and the corresponding (E,V)’s are parametrized by Grass(3, H).

Note that in this way the cases (3) and (5) coincide if we fix the graded. However, we will

have to give different global descriptions for them because the base spaces we will work on
will be different.

The previous 6 cases are taken into account by propositions [7.3.7], [7.3.2] [7.3.3] [7.3.4] [7.3.5

and respectively. We give below the proof of those 6 results.

Proof of proposition [7.3.1] Let us fix any triple (a,b,c) € N3; as in the proof of proposition
we define sets of data 22 and 95’ ; moreover, we consider also a third set of data of the
form 2%, i.e. the data consisting of a tree with 2 leaves with associated invariants (n1, k1),

(n4, k4) and c. For each set of that type we apply proposition and we get projective

fibrations and universal families as usual.



192 11. Parametrization of objects with canonical filtration of type (1,3) and (3,1)

If we consider only 22 and .@E, then we can proceed as in the proof of proposition in

order to get a diagram as ((10.11). In particular, we will need to use the following morphisms
obtained by that diagram:

03 . P2 .

~3 ~2
D bij 4 3% Tb;j 9 pa;i A
Rapij — Aapsij — Uapij — Ugyy — G1.

Using again the same computations of that proposition, we get an exact sequence of families

of coherent systems parametrized by R, . ;

0— (@LWl) — (ga,b;i,j,)}a,b;i,j) — (@%WQ) D (@&Wzﬂ) —0 (11.7)

as we got in (|10.15)). Now let us apply proposition m to the set of data UZ. So we

get a finite locally closed disjoint covering {Ué"k}k of Ué" and a family of projective fibrations
24

a Pe; ~ . e e . .
{Rﬁ. k bl L{f, «tk- Moreover, for each k we get a family of non-splitting extensions parametrized

by R‘Cl > Obtained as in 1}

- (sﬁﬁﬁka%k)*(fié‘fkvfiik)*@zx,m) Dpa, Ol (1) = 0. (11.8)

Now for every triple (4, j, k) we consider the following cartesian diagram, constructed in
several steps starting from (a):

A o1 A A
a,b,c;i, g,k a,b,c;i, g,k Ra,b;i,j
0(f) 62 Dle) 03
A Al A~ ~
Rik Ba,b,c;i,j,k Aa,b;i,j
0(d) ¢ O(c) b2
a7 N R
c;k Ua,b,c;i,j,k Ua,b;i,j
0(b) O(a) Pasioft;
a4 -4
A~ Pek A~ Pek
4 ' 4 ’ A
Rc;k Uc;k Gl :

(11.9)

Then we proceed as in the proof of proposition given the sequences ((11.7)) and ((11.8]),
we pullback both of them to ]:Ea,b,c;i,j,k and we sum them in order to obtain an extension

parametrized by that space, as follows:
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0= (Q1,W1) = (Eapesiibs Vaneijr) = (Do, Wa) @ (D3, W3) & (Qa, Wa) = 0. (11.10)

Here the various (@Z, )/N\/i)’s are suitable pullbacks from the corresponding Gi’s to f?a,b@m’k
of the local universal families (Ql, VAVZ-)’S. Then we conclude the proof in the same way of the
proof of proposition We only need to consider the additional action of PGL(N4) on
the various spaces. The morphisms ¢1, ¢2 and ¢3 satisfy the claim of the proposition since
qgl, $2 and (]33 are obtained in diagram as pullbacks of projective fibrations with fibers
isomorphic to P¢~1, PP~1 and P! respectively. ]

Proof of proposition [7.3.2 Let us consider the family of schemes of the form R, i, 0b-
tained in the proof of proposition In cases (a) and (b) there is nothing to prove since
there is no action of Zs. In cases (c) and (d) it is clear that there is an action of Zg and that
the induced morphisms to G (ag;n,d, k), respectively to G~ (ae;n,d, k), are injective only
after passing to the quotient with respect to that action. The only claim that a priori is not
obvious is the existence of the local trivializations that are compatible with the action of Zs.

We give all the details only for the case (d) and assuming for simplicity that the every
index a, b, c,1,j,k can assume only one value. In particular, this means that we have the
following identities:

N ~ ~ ~ 4 A A N ~ ~ ~ ~
Ua,a;i,j = G1 X G2 X Gg, Uc;k = G1 X G4, Ua7a7c;i,j,k = G1 X G2 X G3 X G4.

So we can rewrite diagram (L1.9)) as follows:

R C RO
O b2 O 63
R B A
O b3 O P2
. o o A
R4/ G1XG2XG3XG4 G1XG2XG3
U O p2ord
. @ . . P .
R4 Gl X G4 Gl.

(11.11)
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As in the proof of proposition we can describe an open coverlng {V Bla,pea of
Gy x (G2 x (i3 Ags3) such that if we denote by Va 3 the subscheme of R over V, 3, then we
have trivializations A, g of 9% o 03 as follows

~ )\aﬁ

¢2093\

As in the proof of proposition [7.1.2] if € denotes the non-trivial element of Zs, then we
have that & acts on G1 X Go X G3 = G1 X Ga X Go so0 that E(Vaﬂ) = Vgﬂ. Then we write

aﬁXPa 1X]P>a 1

Vo/z,ﬂ = Va,ﬁ x Gy C Gy x (Go x G3 ~ Ag3) x Gy.
In the case when Ufk does not coincide with the whole Gy x Gy, this should be defined as:

VC/Y,B = Vaﬁ Xél 03]@

In the case under consideration we can simply use the previous definition. Now the pre-
vious action of € on G’l X G’g X és extends to an action on Gl X @2 X Gg X G’4, so that
e( AO’m) = Vj - Since the fibration 6% o0 )% is trivial on V, g, then we get that the fibration
453 o &2 is trivial over each V! - Moreover, this trivialization is compatible with the action of
Zo on the base and on the top space.

Since $* is a locally trivial fibration, then there is a covering {Ufyl}V of U* = G1 x G4 and
trivializations

CPAL ™ pel
AW.R\U§—>UV><IP> .

Then we define

A~

0’6”377::17 (U ><G2><G3) VﬁXCIU;LCGlX(GQXGg\A)XGZL.

By pullback we get induced trivializations of ¢*':

’ -1
N iR |Vé, L Vo’éﬁ7 x P¢
For every triple (a, 3,7) let us define
/ Dl
By T R Vi,

By construction, we have
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T/ A H4!
= C 71 ) X1 (R (71 > .
a,Byy ( |Va’m Vi ‘Vaﬁ,7
Since both both ¢33 ) gZA)g and @4/ are trivial fibrations if restricted to Voﬁﬁw then we get
that

Vé,ﬂ Y

V) g, x PO PO P

The action of Zs extends to an action also on Gl X ég X Gg X G4 and on R. We have that
E(Vo’[ﬂﬁ) = Vé,a,v and analogously for V, 5. In particular, we have:

o (V. )=V

L0y o,

A~

o if o # [ and we set Waﬁﬁ = ‘A/C;”Bﬁ N Vé@ﬁ’ then 5(Wa7577) = Wa i

~

o if a # 8 and we set Z, 5., := (Vo’éﬂﬂ U f/ﬂ”aﬁ) \ Wa g then e(Zag,) = Za s

Then the set:

{TI}ZGL = {{Va,a,v}aeAa {Wa,ﬁ,y}a<67 {Za,ﬂ,'y}aKB}7

is a locally closed covering of G’l X ((;72 X Gg N Agg) X G4 and each of such subschemes is
invariant under the action of Zy. Moreover, by restricting to any subscheme T, we have a
trivialization of the fibration qAﬁg o gﬁg o ngﬁl and that trivialization is compatible with the action
of Zy on Ty x Po~1 x P2~ x P~1 Finally, we consider the free action of PGL(Ny) x PGL(Ny) X
PGL(N3) x PGL(Ny) on all these schemes and we conclude. O

Proof of proposition[7.3.3. Let us fix any pair of invariants (a,b) € N2, Let us denote by pia
and Gi2 the projections from Gy x Gs to its factors. If the subscheme

U2 .= {t € Gy x Gy s.t. dim Ext!((d}2, G12)* (D2, Wa)t, (B2, P12)*(Q1, Wh)i) = a}

is non-empty, then it has a finite disjoint locally closed covering {U 31}1 such that for every 4
the sheaf

Eoi = Extl  ((Gh2, G12)" (D2, Wh), (B2, P12)*(Q1, W)
Ug.

is locally free of rank a and commutes with base change. By conditions (11.3)), respectively

(11.4), and lemma we get that

Hom (419, G12)*(Qa, Wa)i, (o, P12)*(Q1, Wi )i) = 0

for all t € G4 x Go. Therefore, we can apply corollary for t = 2, so we get that there
exists a grassmannian bundle

92;,1;1‘ : Qg;a;i = GY’CLSS(2, Ea;i) — Ug;i



196 11. Parametrization of objects with canonical filtration of type (1,3) and (3,1)

associated to the sheaf Eg;i. Moreover, there exists a universal non-degenerate extension of
rank 2 on the right:

0— (é/Q;a;iv éQ;a;i)*(ﬁII%ﬁlZ)*(Qla Wl) - (5{%%3’ V;?'LS) —

— (éé;a;iv éQ;a;i)*(qll% qAIQ)*(Qsz WQ) ®Q2;a;i M2;a;i — 07 (1112)

where ﬂg;a;i is a locally free sheaf on Qg;a;i of rank 2. In particular, we have that for every
t € Grass(2, Ea;i) the restriction of the previous extension to t gives an extension of the form

0— (Ql, Wl) — (E123, V123) — (QQ,WQ>®2 —0

that is a representative for an object u = (2, u3) such that ug and ps are linearly independent
vectors of Ext!((Qa, Wa), (Q1, W1)).

Now let us consider a set of data .@g‘ given by

e 7 =2 i.e. we are considering a tree with only 2 leaves and an internal node;

e the invariants (n1, k1) and (ng4, k4) associated to the first leaf, respectively to the second
leaf;

e any non-negative integer b such that the subscheme

Uy == {t € G1 x Gy s.t. dim Ext (¢4, G1a)* (Qa, Wa)s, (B, P14)* (1, Wi)i) = b}
is non-empty. Here p14 and 14 are the projections from @1 X @4 to its 2 factors.

Then by proposition we get a family of induced locally trivial fibrations of rank b:

where {(A],f j }; is a finite disjoint locally closed covering of U',jl. Moreover, for every j we get a

universal family of non-splitting extensions parametrized by Ré‘, y
0— (@g,gv @é;j)*(ﬁ/147ﬁ14)*(917 Wl) — (Sljl,_ya Vlél,j) ®jo Ob,](_l) —

= (28 $)" (@1, 412)"(Qa, Wa) @y Opg(=1) = 0. (11.13)

Then for every pair (i, j) we consider the fiber product
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~ p2 N q2

Ra,b;i,j Aa,b;i,j QQ;a;i
Pa ] ] 02;0::
Rg:] Ua,b;i,j Us;i
44 Il O D12
Ry — g,

Note that actually /la’b;z-’j = Grass(2, Fa;i), where Fa;i is the pullback of E‘aﬂ- from ng to

Uavb;imj'

Then we consider the pullback of (11.12) from Q.4 to R ; and the pullback of (11.13)

from Rg, ; t0 Rqp;i,; and we sum the resulting extensions. Then we get an extension parame-

trized by Rmb;i’j of the form

0— (élywl) — (ga,b;i,jv Va,b;i,j) — (éQa W2) ®Ra,b;i,j -//\/lVZ;a;i @ (é4a Wll) — 0.

By using lemma we get that for every r € Ra,b;i,j the central term of the previous
extension restricts to a coherent system (E, V) that belongs to G (ac;n,d, k), respectively
to G~ (ae;n,d, k). Therefore, by the universal properties of such schemes, there exists an
induced morphism @, p,; ; from Rmb;i’j to G (ae;n, d, k), respectively to G~ (ae;n, d, k). Then
we consider the free action of PGL(Ny) x PGL(N2) x PGL(Ny) on R,y  and we denote
by Rgp;i,; the quotient. The morphism @ p.; ; is invariant under such an action, so it induces
a morphism wep;,; from Rgpeij to G (ae;n,d, k), respectively to G~ (ae;n,d, k). Such a
morphism is injective by lemma [11.1.2] so we conclude. O

Proof of proposition[7.3.4 Let us consider the family of schemes of the form Rmb’qi,j’k ob-
tained in the proof of proposition [7.3.1] For the schemes of the form (a),(b) and (e) there is
nothing to prove, since there are no actions, so we conclude directly. For the schemes of the
form (c),(d) and (f)-(i) we can proceed as in the proof of proposition [7.3.3] Then we have only
to describe the action of S3 on the schemes of the form (j). For simplicity, let us assume that
the indices a and i assume only one value. Otherwise, the proof involves more indices, but
the idea is exactly the same. In that case, in the proof of proposition [7.3.1]for every | = 2, 3,4
we have that

Ué;i = Gl X GQ

and the base U = Ua7a7a;i7i7i is constructed as the fiber product
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U= 02 XGI Ug;i XG’1 Ugﬂ' = él X éz X éz X éz.
For | = 2,3,4, let us write:

N A Pl=¢2.. . N N
Xl = Rgﬂ —;Ll UL%,Z - Gl X GQ.

This is the same fibration, we give 3 different names to that fibration in order to distinguish
the various components of

Ra,a,a;i,iﬂ- = X2 Xé’l X3 XG1 X4.
Since $? is a locally trivial fibration with fibers isomorphic to P¢~!, then there exists an

open covering {U2}aca of G1 x G and trivializations

U2 xpr—t = X2

vz

If we identify X2 = X3 = X*, we get that the same covering trivializes also ¢ and $*.
We denote those coverings of X? and X* by {Ug}ﬁeA and {U;l}yeA respectively. Now for
every triple (a, 3,7v) € A% we consider

ﬁa,ﬁ;y = (Ug X Gg X G4) N (Ug X GQ X G4) N (U;l X GQ X 63) C
CélXGQXGgXGz;:GlXGQXGQXGQ.
In the case when ng does not coincide with the whole G‘l X Gg, this should be defined as:
Uaﬁﬁ = Uz Xél Ug Xél Ué

The set {Ua,gﬁ}aﬁﬂ@; is an open covering of U. Let us consider:

r7 D _ Y2 . v3. o v4
Uapr = Rlg, , =X g2 xg, X |Ug X X lp2-

Since we have trivializations as before, we get that

17@75,7 ~ ﬁa,gﬁ x Pl x Pl i pot

and this isomorphism is compatible with the fibration ¢21 o (52 o <;33. We denote by A the big
diagonal of Gy x Gy x Gg, i.e. the set of all triples of objects such that at least 2 of them are
isomorphic. Then we define the scheme

M = R|GlX(GQXéQXGQ\A)

For every triple («, 3,7) we write:

Va,ﬁ,’y = angﬁ N Gl X (GQ X GQ X GQ ~ A)

Then we have that M is covered by open subschemes ‘7&7% defined as ﬁa, By N M and we
have trivializations:
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Va,ﬁ,'y ~ Va,ﬁ,'y X Pail X Pail X ]P)ail

compatible with the fibration ¢31 o QZ/;Q o qASg. Moreover, we have a natural action of S3 both on
él X (ég X GQ X Gg ~ A) and on M, and such an action is compatible with this trivializations.
Now for every o € S3 we have that O’(Vaﬁ,,O = Va(a)ﬂ(ﬁ)’(,(y) where o acts by permutations
on the ordered set {«, 3,7}. Then we set the following notation:

o If o # ~, we set Wgﬁ = (Vava,ﬁ, N Vama) U (VCW,7 N V%CW) U (Vay,a N V4.a.a). Then we
define:

2 . _ 0 173
W2, =W W2,

o If o, B, are 3 distinct indices, then for every i = 1,--- ,6 we define ZZ 5 A8 the set
of all the t € Va(a)yg(ﬁ)’a(w) (for some o € S3) that belong to exactly ¢ sets of the form

A

V() m(8)m(y) for n € S3. For example,

L . . .
Zo gy = (Usess Vo(a),o(8),0(v) ™ (Uorness Vo(a),o(8),0(v) N Vata)m(B)m)

and

Za sy = NoessVa(a)o(8)0(1)-

Each of these sets is invariant under the action of S3 and we have that the set

{j_‘l}lEL = {{Va7o¢7a}o¢6A7 {Wol",y}lzl,z:s, {2375’7}1—1,A.A,6}
a<y

a<fB<y

is a disjoint locally closed covering of @1 X (Gg X Gg X Gg N A) and each of such subschemes is
invariant under the action of S3. By restricting to any subscheme T} we have a trivialization
of the fibration quSg o <2>2 o gZ)l and that trivialization is compatible with the action of S3 on
T; x Po=1 x Pe=1 x Pe~1. Finally, we consider the free action of PGL(N;) x PGL(N3) x
PGL(N3) x PGL(N3) on all these schemes and we conclude. O

Proof of proposition [7.3.5. The proof is on the same line of the proof of proposition[7.3.3] The
only significant difference is that we need to substitute the scheme Umbﬂ-,j in that proposition
by the scheme

A

Va,b;i,j = 0a,b;i,j N (él X (GQ X GAQ ~ A))

Moreover, we have to replace the grassmannian fibration A, . ; over Uy ; by its restric-
tion By p; over V. . Then the rest of the proof is analogous, so we omit it. ]
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The proof of proposition is on the same line of the proof of proposition SO we
omit the details.

11.2 Canonical filtration of type (3,1)

Let us fix any object EB?:I(Qi, W;), with all the (Q;, W;)’s a.-stable coherent systems with
the same ac-slope p; let us suppose that (E,V) has such a graded at a. and that it has
ac-canonical filtration of type (3,1). Then every (E,V) that we want to parametrize sits in
an exact sequence of the form:

0= (Qr, W1) @ (Qa, Wa) @ (Q3, W3) S (E, V) 2 (Qu, Wa) — 0. (11.14)

If (E,V) has canonical filtration of type (3,1), then it has always the following proper
a.-semistable subobjects with a.-slope u:

(a) (Qi, W;) fori=1,2,3;
(b) for all i # j € {1,2,3}, (Qi, W) ® (Qj, Wj);
(c) (Q1, W) ® (Q2,W2) ® (Q3, W3).

This is not a complete list, see lemma [11.2.1} Given any (E,V) as in (11.14)) with -
filtration of type (3,1), the following numerical conditions are necessary in order to have that
(E,V) is not destabilized for o by subobjects of type (b) and (c):

TN E yisjeqos), Dttt K (11.15)
ng +n; n ni + ng + ng n
Actually, both conditions are implied by
ki k
— < — e {1,2 11.1
ni<n Vie{1,2,3} (11.16)

and these conditions ensure also that (E, V') is not destabilized also by subobjects of type
(a). Therefore we get that conditions are necessary (but in general not sufficient) in
order to have that (E,V) belongs to G*(a¢;n,d,k): Analogously, the following numerical
conditions are necessary (but in general not sufficient) in order to have that (E, V) belongs
to G~ (ae;n,d, k):

LS % Vie {1,2,3}. (11.17)

ng

Lemma 11.2.1. Given any (E,V) as in (11.14) with conditions , respectively ,

then (E,V) belongs to Gt (ae;n,d, k), respectively to G~ (ae;n, d, k), if and only if there are
no quotients ¢; : (E,V) — (Q;, W;) for i = 1,2,3. Moreover, if this happens, then (E,V) has
ac-canonical filtration of type (3,1).
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Proof. Let us suppose that we use conditions , the other case is completely analogous.
If there is any quotient ¢; as in the claim, then the kernel (E', V') of (; is an «,-semistable
subsystem of (E,V) with ¥’ = k — k; and n' = n — n;. Since po (E,V) = pa.(E', V'), using
we get that fL—: > %, so (E,V) cannot be of-stable.

Conversely, if (E,V) is not a-stable, then there exists a subsystem (E’, V') that desta-
bilizes it for af. Using (11.16)) and (11.15), the graded of (E’, V') cannot contain only some
(possibly all) objects of the form (Q;, W;) for i € {1,2,3}, so it contains (Q4, Wy). Therefore
the quotient (E”, V") := (E,V)/(E', V') contains only some (possibly all) objects of the form
(Qi, W;) for i € {1,2,3}. If we consider a Jordan-Holder filtration (E;', V}");=1 ... x of (E", V"),
we get that (E”,V")/(E}_,,V/",) is isomorphic to some (Q;, W;) for i € {1,2,3}, so we get a
quotient (E,V) — (E,V)/(E", V') = (E", V") — (Q:, W)).

Now let us assume that there are no quotients ¢; : (E, V) — (Q;, W;) for ¢ = 1,2,3; we
want to prove that the a-canonical filtration of (E, V) is of type (3,1). So let us consider the
filtration of (E, V') given as follows:

0= (Eo, Vo) C (E1, V1) == (Q1,W1) @ (Q2, Wa) @ (Q3,W3) C (E2, V) = (E,V). (11.18)

Here (E2,V2)/(E1,V1) = (Q4,Ws) is ac-stable and (E1,V1)/(Eo, Vo) = (E1, V1) is ae-
polystable. Then by proposition we get that is the a.-canonical filtration of
(E,V) (and so (E,V) has a.-canonical filtration of type (3,1)) if and only if condition (c)
of that proposition is satisfied. In our case the index t is equal to 2, so is the ae-
canonical filtration of (E, V) if and only if for all i = 1,--- ,4 and for all non-zero morphisms
vi : (Qi, W;) — (E,V) we have 8 o~; = 0. Now by hypothesis (Qq, Wy) 2 (Q;, W;) for all
i =1,2,3. Since all the (Q;, W;)’s for i = 1,--- ,4 are a.-stable of the same slope, then for all
i=1,2,3 and for all v; : (Q;,W;) — (E,V) we have that 8 o~; = 0. Then we conclude that
for every (E,V) as in the following conditions are equivalent:

(a) (11.18) is the a.-canonical filtration of (E,V);

(b) for all morphisms 74 : (Q4, W) — (E,V) we have foy4 =0.

Now proving (b) is equivalent to proving that the sequence (11.14]) is non-split. By con-
tradiction, let us suppose that it is split. Then for every ¢ = 1,2,3 we can write morphisms
of the form

G (B,V) = &y (Q1,Wi) - (Qi, W)
But this is impossible in our hypothesis, so we conclude. O

Now if we denote by p any extension like (11.14), we get that we can identify p with a
triple
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3
(. iz, p3) € @D Ext! ((Qa, W), (@i W)
i=1

For every ¢ = 1,2, 3, this identification gives a diagram of the form:

B

0— @, (Q, W) —— (E,V) (Qa, Wy) —— 0 T
pri % i ~ i
a; Bi
0 — (Qi, W) —— (Eu, Vi) —— (Q4, Wy) —— 0 Wi

(11.19)

where pr; is the quotient ®3_,(Q;, W;) — (Qi, W;) for every i = 1,2,3. Then we have the
following results.

Lemma 11.2.2. Let us fiz any quadruple (Q;, W;)i=1,... 4 € H?:l G with numerical conditions

, respectively , and let us suppose that (Q;, W;) # (Q;,W;) for all i # j €
{1,2,3}. Then the (E,V)’s that belong to GT(ae;n,d, k), respectively to G~ (ae;n, d, k), that
have graded ®}_,(Qi, W;) and canonical filtration of type (3,1) are parametrized by P(Hy) x
P(Hy) x P(H3), where H; := Ext' (Qq, W4), (Qs, W5)) fori=1,2,3.

Proof. To any (E, V) that we want to parametrize we can associate a triple (u1, po, p3). Using
the previous lemma, the following facts are equivalent

(a) (E,V) belongs to G*(ae;n,d, k), respectively to G~ (ae;n,d, k), and it has a.-canonical
filtration of type (3,1);

(b) there are no quotients ¢; : (E,V) — (Q;, W;) for i =1,2,3.
Since (Qq, Wy) # (Qi, W;) for i = 1,2,3, then (b) is equivalent to
(d) for all quotients (; : (E,V) — (Q;, W;) for i = 1,2,3 we have that a o (; = 0.

Since (Qi, W;) % (Q4, W) for all i # j in {1, 2,3}, then by lemma we get that (c) is
equivalent to

(d) p; #0 for all i =1,2,3.

Now if we look at the sequence (L1.14]), we get that Aut(Q4, Wy) = C* and Aut((Q1, W1)®
(Q2, W2) ® (Q3,W3)) = C* x C* x C* (because (Q;, W;) % (Q;, W;) for all i # j € {1,2,3}),
so we conclude. ]

Lemma 11.2.3. Let us fiz any quadruple (Qi, W;)i=1,... 4 € H?:l G,; with numerical conditions

, respectively (11.17), and let us suppose that (Q1, W1) ~= (Q2, Wa) # (Q3, W3). Then
the (E,V)’s that belong to Gt (ae;n,d, k), respectively to G~ (ag;n,d, k), that have graded
@11 (Qi, W;) and ae-canonical filtration of type (3,1) are parametrized by Grass(2, Hy) x
P(H3), where H; = Ext' ((Q4, W), (Qi, W3)) fori=1,3
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Proof. As in the previous proof, we get that for any (£, V) that sits in a sequence (11.14)
with conditions (|11.16]), respectively (11.17]), the following facts are equivalent:

(a) (E,V) belongs to Gt (ae;n,d, k), respectively to G~ (ae;n,d, k), and it has a.-canonical
filtration of type (3,1);

(b) for all quotients ¢; : (E,V) — (Q;, W;) for i = 1,3 we have a o ( = 0.

In this case (Q1,W71) =~ (Q2, W3), so we can ignore the case i = 2 in (b). Using lemma
3.3.2] we get that (b) is equivalent to

(¢) ps # 0 and pq, o linearly independent in Hj.

Now if we consider the exact sequence (11.14) with (Q1, W1) ~ (Q2, W2) # (Qs, W3), we
get that Aut(Qq, Wy) = C*, while Aut((Q1, W1) & (Q1, W1) ® (Q3,Ws3)) = GL(2,C) x C*, so
we conclude. 0

Lemma 11.2.4. Let us fiz any quadruple (Q;, W;)i=1,... 4 € H?Zl G; with numerical conditions

, respectively (11.17), and let us suppose that (Q1, W1) ~ (Q2, Wa) ~ (Q3, W3). Then
the (E,V)’s that belong to Gt (ae;n,d, k), respectively to G~ (ag;n,d, k), that have graded
®_1(Qi, W) and ac-canonical filtration of type (3,1) are parametrized by Grass(3, Hy), where
we set Hy = Eut' ((Qs, Wa), (@1, Wh)).

Proof. As in the previous proof, we get that for any (F,V) that sits in a sequence (11.14))
with conditions (|11.16]), respectively (11.17]), the following facts are equivalent.

(a) (E,V) belongs to G (ae;n,d, k), respectively to G~ (ae;n, d, k) and it has a.-canonical
filtration of type (3,1);

(b) for all quotients (1 : (F,V) — (Q1, W1) we have (1 oa = 0.

In this case, (Q1, W7) =~ (Q2, Wa) ~ (Q3, W3), so we can ignore the cases i = 2,3 in (b).
Since (Q1, W) =~ (Q2, Ws) ~ (Q3, W3), by lemma we have that (b) is equivalent to

(¢) p1,po and pg are linearly independent in Hj.

Now if we consider the exact sequence (11.14]) with (Q1, W1) ~ (Q2, Wa) ~ (Q3, W3), we
get that Aut(Q4, Wy) = C*, while Aut((Q1, W1) ® (Q1,W1) ® (Q1,W1)) = GL(3,C), so we
conclude. 0

Now we give a global parametrization of the objects described before, i.e. we describe
families of schemes that parametrize various types of (E,V)’s when the graded @7 (Qi, W;)
varies over [[i_, Gi and the a,-canonical filtration is of type (3,1). Since the order of the
objects (Q;, W;) for i = 1,2, 3 is not important, we can assume that we have fixed any order
that satisfies the following properties:

o if (n;, ki) # (nj, kj) for i # j € {1,2,3}, then we use the lexicographic order on the set
{(ni, ki) Fim1,2,3;
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e if exactly 2 (n;, k;)’s are equal for ¢ € {1,2,3}, then we assume that they are (ng, k1)
and (ng, k2); in this case we have automatically that dy = dy;

e if all the (n;, k;)’s are equal for i € {1,2,3} (and so also d; = dp = d3) and if exactly 2
among the corresponding (Q;, W;)’s are isomorphic, we order them so that (Qq, W;) ~

(Q2, Wa).

Let us write

H; :=Ext! (Qq, W4),(Q:,W;)) Vi=1,2,3.
Then we need to distinguish the following subcases:
If (n1,k1) # (n2,k2) # (ns,ks) (this implies that (ni, k1) # (ns, ks) since we are using

the lexicographic order), then having fixed the graded, the corresponding (E,V)’s are in
bijection with the points of P(H;) x P(Hs) x P(H3).

If (n1, k1) = (n2, k2) # (n3, k3) and (Q1, W1) % (Q2, Wa), then the corresponding (£, V)’s
are parametrized by Hio X P(H3), where Hyo := (P(Hy) x P(H2))/Zo.

If (n1,k1) = (n2, k2) # (n3, k3) and (Q1, W) ~ (Q2, Wa), then H; = Hy and the corre-
sponding (E,V)’s are parametrized by Grass(2, Hy) x P(H3).

Let us assume that (ni,k1) = (n2,k2) = (ns, ks) and (Q1,W1) % (Q2, W2) (using the
hypothesis on the ordering, this implies that (Qs, W3) is not isomorphic to (Q;, W;) for i =
1,2). Then the corresponding (E,V)’s are parametrized by (P(Hy) x P(Hz) x P(Hz))/Ss.

Let us assume that (nl,k‘l) = (ng,k‘g) = (ng,kg) and (QlaWI) ~ (QQ,WQ) ¢ (Qg,Wg).
Then Hy = Hj and the corresponding (F,V')’s are parametrized by Grass(2, Hy) x P(Hs).

If (n1, k1) = (n2, k2) = (ns, k) and (Q1, W1) = (Q2, W2) ~ (Q3, W3), then Hy = Hy = Hj
and the corresponding (E,V)’s are parametrized by Grass(3, Hy).

Note that in this way cases (3) and (5) coincide if we fix the graded. However, we will

have to give different global descriptions for them because the base spaces we will work on
will be different.

The previous 6 cases are taken into account by propositions [7.4.7] [7.4.2] [7.4.3] [7.4.4] [7.4.5

and respectively. The proofs of those results are omitted since they are analogous to
those of the previous section. The only significant difference is that we use lemmas [11.2.2]

[[T.2.3] and [11.2.4] instead of lemmas [I1.1.1] [I1.1.2] and [11.1.3] respectively.




Chapter 12

Parametrization of objects with
canonical filtration of type (2,1,1),
(1,2,1) and (1,1,2)

Having fixed any triple (n,d, k) and a critical value «, for it, in this chapter we want to
describe how to parametrize those (E,V)’s that have ac-canonical filtration of type (2,1,1),
(1,2,1) and (1,1,2) and that belong to Gt (ac;n,d, k) or to G~ (ae;n,d, k).

Remark 12.0.1. We have a complete pointwise description for all the cases (2,1,1), (1,2,1) and
(1,1,2), as described below. Regrettably, we are able to get complete global results only for
the cases (2,1,1) and (1,1,2); at the moment it is possible to get explicit results only for 4 of
the 8 subcases involved in the case (1,2,1) (see below for the details).

Remark 12.0.2. We will give the pointwise descriptions for every quadruple (ng, k;)i=1,.. 4
(with the additional numerical conditions such that the corresponding (E,V)’s belong to
Gt (aen,d, k) or to G~ (ae;n,d, k)). Anyway, we will need the results of this chapter only for
the case when n =4 and k = 1; in this case the subschemes G (a;n, d, k) will be associated
to a quadruple (n;, k;)i=1,... 4 such that

(1,0) = (n1, k1) = (n2, ka) = (n3, k3) # (n4, ka) = (1,1);

analogously, G~ (ae;n, d, k) will be associated to a quadruple (n;, k;)i=1,... 4 such that

(L 1) = (n1, k1) # (n2, k2) = (ng, ks) = (na, k) = (1,0).

So we will give explicitly the global results by restricting to the case when (ni, k1) =
(no,ka) = (ns, k) in case of a.-canonical filtration of type (2,1,1) and in the first subcase
associated to a.-canonical filtrations of type (1,2,1). We will restrict to the condition that
(no, ko) = (ns, k3) = (n4,kq4) in case of a.-canonical filtration of type (1,1,2) and in the
remaining subcases associated to a.-canonical filtrations of type (1,2,1).

205
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12.1 Canonical filtration of type (2,1,1)

If (E,V) has ac-canonical filtration of type (2,1,1), then its a-canonical filtration is given
by:

0C (E1,V1) C (Eq, Vo) C (E3,V3) = (E,V)

where (El, V1) ~ (Qb Wl)@(QQ, WQ); we write (Qg, Wg) = (EQ, VQ)/(El, Vl) and (Q4, W4) =
(E,V)/(Ea,Va). All the (Q;, W;)’s for i = 1,--- ,4 are a.-stable coherent systems with the
same ae-slope p. Then we can associate to every (E, V) that we want to parametrize a pair
of exact sequences of the form:

0 = (Qs, Ws) 22 (E", V") 25 (Qu, W) — 0; (12.1)
0= (Q1, Wh) @ (Q2, Wa) 25 (B, V) 25 (B", V") = 0. (12.2)

We denote by p and v the classes of those 2 exact sequences. If (E, V') has a.-canonical
filtration of type (2,1,1), then it has always the following proper a.-semistable subobjects with
ac-slope u:

(a) (Qi,W;) fori=1,2;
(b) (Q1,W1) © (Q2, Wa);

(c) an extension of (Q3, W3) by (Q1,W1) @ (Q2, Wa).

This is not a complete list, see lemma [12.1.2] and remark [12.1.1] for a complete list. If we
consider only the subobjects (a) and (¢), we get that the following conditions are necessary (but
in general not sufficient) in order to have that (E,V) as in (12.2) belongs to G (a¢;n,d, k):

ki k ki+ka+k k
A Weﬂﬂ}—iiii3<f. (12.3)
n; n ni + ng + n3 n
We remark that the first condition implies that
k1 + ko k

< -, (12.4)
ni1 + no n

so also the subobject of type (b) does not destabilize (E,V) for af. Analogously, we get
that the following conditions are necessary (but in general not sufficient) in order to have that
(E,V) belongs to G~ (ae;n, d, k):

ki k ki+ky+ks k
Mol yiequey, Mtheths R (12.5)
n; n ni + ng + N3 n

Now let us cousider the following long exact sequence obtained by applying the functor

Hom(—, (Q1, W1) & (Q2, W2)) to :

o Ext (Qu W), (@1 Wh) @ (Q2s W) 22 Extl (B, V"), (Q1, W1) @ (Qa, Wa)) <3
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2, Bt ((Qs, W), (Q1, W1) & (Qa, Wa)) — - - (12.6)

If we apply ag to v we get a diagram of this form:

B

0 —— &Ly(Qi Wi) —— (E.V) (B, V") 0 v
% 1) % Q2 ag
9 a 1 _
0 —— &1 (Qi, W;) — (E2,V2) —— (@3, W3) ——— 0 (V). (12.7)
By the snake lemma and (12.1)), we have an induced short exact sequence
0= (B, Vo) = (E,V) =5 (Qq, Wi) = 0. (12.8)
We can identify v with a pair
2
(v1,12) € ED Ext! ((E", V"), (@, m)).
i=1
For every ¢ = 1, 2, this identification gives a diagram of the form:
0— L, (Qu W) = (B, V) —— (57, V) 0 v
Pri ~ ni N Pri
434 ﬁ 31
0 ——— (Qu, W) — (Eugi, Vazs) —— (E", V") 0 o (12.9)

where pr; is the quotient EBZQ:l (Qi, W) — (Qi, W;) for i = 1,2. If we denote by j the index in
{1,2} different from 4, then the snake lemma proves that we have a short exact sequence

0= (Q. W) 5 (B, V) ™ (Eai, Viz:) — 0. (12.10)

Having fixed all those notations, let us state and prove the following results.

Lemma 12.1.1. Let us fiz any pair of exact sequences as and , let us denote by

w and v their classes and let us suppose that (Qa, Wy) % (Qi, W;) Vi € {1,2,3}. Then the
following facts are equivalent.

(a) (E,V) has ac-canonical filtration of type (2,1,1);

(b) p#0 and aa(v) # 0.
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Proof. Let us assume (b) and let us prove that (a) holds. By definition of az(v), we have a
diagram as (12.7). We claim that the a.-canonical filtration of (E, V') is given by

0cC (Ql,Wl) D (QQ,WQ) =: (El,‘/l) - (EQ,VQ) C (Eg,Vg) = (E, V) (12.11)
The second line of (12.7) proves that (Eq,V2)/(E1, V1) = (Q3, W3); moreover, by ((12.8])
we get that (E,V)/(E2,V2) ~ (Q4,Ws). So for all i = 1,2,3 the objects of the form

(E;,V;i)/(E;-1,Vi—1) are a.-stable or polystable. Then by proposition we get that (12.11))
is the a.-canonical filtration of (E, V') if and only if condition (c) of that proposition is satisfied.

In our case the index t is equal to 3, gr(E,V) = &} (Q;, W;) and

gr((E,V)/(E1,W)) = gr(E", V") = (Q3, W3) & (Q4, W)

So (12.11)) is the a.-canonical filtration of (E, V) if and only if the following two conditions
hold:

(i) for all i =1,---,4 and for all morphisms ~; : (Q;, W;) = (E, V) we have ) oy; = 0;
(ii) for all i = 3,4 and for all morphisms 7; : (Q;, W;) — (E”, V") we have 33 075; = 0.

Let us consider (ii): here we can ignore 43 because (Q3, W3) % (Q4, W4) by hypothesis.
Moreover, there is a morphism 74 such that 32 074 # 0 if and only if is split, i.e. if and
only if 4 = 0. Now let us consider (i): let us suppose that there is any non-zero morphism
Y4 : (Qa, Wy) — (E, V) and let us write 74 := 51 0y4. Since (Q4, W) 2 (Qi, W;) for i =1,2,3,
then necessarily we have that 85 o4 # 0, so we can apply what we said in the previous lines.

Moreover, if in (i) there exists any morphism ~; for ¢ = 1 or 2, such that £ o y; # 0,
then this implies that we have a non-zero morphism from (Q;, W;) to (E”,V"). Since the
graded of (E", V") is (Q3,W3) @ (Q4, W4) and since (Q4, Wy) is not isomorphic to (Q;, W;)
for ¢ = 1,2, then we have that necessarily (Q;, W;) ~ (Q3, W3); so the morphism ~; that we
are considering is a morphism of the form 3.

So (12.11)) is the a.-canonical filtration of (E, V) if and only if the following two conditions
hold:

e for all morphisms 73 : (Q3, W3) — (E, V) we have 81 oy3 = 0;
o 11 #0.

Now let us suppose that we have a morphism 73 : (Q3, W3) — (E, V) such that 5103 # 0
and let us consider (12.8). We have that necessarily no~ys = 0 because (Q3, W3) and (Q4, Wa)
are ag-stable coherent systems and they are not isomorphic. Then by exactness of we
get an induced non-zero morphism ~4 : (Q3, W3) — (E2, V) such that v3 = 6 o 75. Now by
definition of 74 and by commutativity of we have:

ago oy =pB1080 =B oy3#0.
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So we get that in particular 8] o5 # 0, so it belongs to Aut(Q3, W3) = C*. Therefore 74
gives a splitting of the second line of ({12.7)), so az(v) = 0.

So we conclude that if (12.11)) is the a.-canonical filtration of (E, V'), then u # 0 and
az(v) # 0, so (b) is verified. Conversely, if = 0, then the a.-canonical filtration of (E, V) is
of type (2,2), (3,1) or (4), but not of type (2,1,1). If @z(r) = 0, then the second line of ([12.7))
is split, so

(E,V) D (B2, V2) ~ (Q1,W1) ® (Q2, W) & (Q3, W3).

So the ac-canonical filtration of (E, V) is of type (3,1) or (4), but not of type (2,1,1). So
we have proved that (a) and (b) are equivalent. O

Lemma 12.1.2. Let us fiz any pair of exact sequences as and with condilions

, respectively (12.5). Moreover, let us suppose that (Qs, Wa) # (Q;, Wi)Vi € {1,2,3}
and that

ki + k k ki + k
i < — Vie{l,2}, resp. i+ X3
n; +n3g n n; + N3

Let us also suppose that (E,V') has a.-canonical filtration of type (2,1,1). Then the fol-

lowing facts are equivalent.

SE i {1,2}. (12.12)
n

(a) (E,V) belongs to G (ae;n,d, k), respectively to G~ (ag;n,d, k);
(b) there are no quotients (; : (E, V) — (Q;, W) fori=1,2.

Proof. Let us assume conditions (12.3) and the first part of (12.12)); the other case is com-
pletely analogous.

If there is any quotient (; : (E,V) — (Q;, W;) for some i € {1, 2}, then the kernel (E', V")
of ¢; is an ac-semistable subsystem of (E,V) with the same a.-slope as (E,V) and with
K =k—ki,n’ =n—mn;. Since po. (E,V) = pa. (E', V'), using we get that fT: > % 50
(E,V) cannot be a/-stable.

Conversely, if (E,V) is not «f-stable, then there exists a proper subsystem (E’,V’) of
(E,V) that destabilizes it for ;. Such an object is necessarily a.-semistable with the same
ac-slope as (E,V); the length of a Jordan-Hoélder filtration of (E’, V') can be equal to 1,2 or
3, so we have to handle all these cases. By definition of a.-canonical filtration of type (2,1,1),
we have that (Q1, W1) and (Q2, Wa) are the only a.-stable subobjects of (E,V'); therefore we
have necessarily that (Q;, W;) C (E’,V’) for some i = 1, 2.

Length of any a.-Jordan-Hélder filtration of (E’, V') equal to 1. In this case (E', V')
coincides with (Q1, W1) or (Q2, Wa), that don’t destabilize (E, V') because we are using ((12.3)).
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Length of any «a.-Jordan-Hoélder filtration of (E', V') equal to 2. If (E',V’) is an
extension of (Q2, W2) by (Q1,W1) or conversely, then it does not destabilize (E, V) because
of ({12.4). If (E',V’) is an extension of (Q3, W3) by (Q;, W;) for i =1 or 2, then (E’, V) does
not destabilize (E, V) for o since we are using the first part of (12.12).

Lastly, we have to consider the case when (E’, V') sits in a non-split exact sequence of the
form:

0= (Qi, Wi) <5 (B, V') 25 (Qu, W) = 0 (12.13)

for some i = 1,2; we denote by ~ the inclusion of (E', V') in (E,V). Let us consider the
exact sequences and : if 1 o~y = 0, this induces an injective morphism ' :
(E", V') = (Q1,W7) & (Q2, W2) such that v = a; o+, but this is impossible since the graded
of (E', V') contains (Q4, Wy) and (Qi, W;) # (Q4, Wy) for i = 1,2. Therefore, we have that
Brovy: (E', V') — (E", V") is non-zero. Then we have to consider 2 subcases as follows

o If 51 oyoa = 0, then by exactness of , we get an induced morphism ~” :
(Q4,Wy) — (E", V") such that v o 8 = 31 oy # 0, so in particular 74 # 0. Since
(Q3, W3) % (Qa, Ws), then v gives a splitting of (12.1]), so g = 0, but this is impossible
because of lemma, Therefore, this case cannot happen.

e If 1 oyoa # 0, then such a morphism is injective and we get that (Q;, W;) is contained
in gro, (E", V") = (Qs3, W3) ® (Q4, Wy). Since (Qq, Wy) # (Qi, W;), we conclude that in
this case (Q;, W;) ~ (Q3, W3). Then we have

ki +k ks + k k
+ R4 3+4>

n; + N4 ng + nyg n

because of (12.4). Therefore, the object (E’, V') destabilizes (E, V) for . In this case,
the morphism ~ induces an exact sequence

0= (B, V") s (B,V) - (B, V) — 0.

By looking at the graded objects associated to the first 2 coherent systems we get that
gra.(E, V) = (Q;, W;) & (Q3, W3) where j is the index in {1, 2} different from 4. In this
case we have already prove that (Q;, W;) ~ (Qs, W3), so

9rac (B, V) = (Qi, W3) @ (Q4, W) = (Q1, Wh) @ (Q2, Wha).

In particular, we have a quotient ¢’ : (E, V) - (Qq, W;) for some i = 1,2. By composing
such a quotient with ¢ we conclude that we have a quotient (; : (E,V) — (Q;, W;) for
some ¢ = 1, 2.
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So we conclude that if there exists a suboject (E', V') of (E,V) with length of any a.-
Jordan-Holder filtration equal to 2, that destabilizes (E, V') for o, then there exists a quotient
G: (B, V)= (Qi,W;) for some i =1,2.

Length of any a.-Jordan-Hélder filtration of (E',V’) equal to 3. In this case we
denote by (E, V) the quotient (E,V)/(E’,V'). This is a coherent system that is a-stable. If
it equal to (Q4, Wy), then (E’,V’) does not destabilize (E, V) for af because of (12.3). If it
is equal to (Q;, W;) for some i = 1,2, then (E’,V’) do destabilize (E,V) for o .

Lastly, if (E, V) is equal to (Qs, W3), then we denote by (3 : (E,V) — (Qs, W3) the quo-
tient and we distinguish 2 cases as follows.

o If (Q3,W3) % (Qi, W;) for some i = 1,2, we consider the exact sequence and we
get that necessarily there is an induced quotient ¢4 : (E”, V") — (Q3, W3) such that
(3 = ¢, 0 B1. Then we consider (12.1)): since (Q4, Wa) % (Q3,W3), then we get that
¢hoag # 0, so it belongs to Aut(Qs, W) = C*. Therefore, (4 gives a splitting of (12.2),
so u = 0, but this is impossible by lemma |12.1.1} so this case cannot happen in our
hypothesis.

o If (Q3,W3) ~ (Q;, W;) for some i = 1,2, then (E’, V') destabilize (E, V) for o .

By putting everything together, we get that if (£, V) is not af-stable, then there exists
a quotient ¢; : (E,V) — (Q;, W;) for some i = 1,2. Together with the first part of the proof,
this is sufficient to prove that (a) and (b) are equivalent. O

Remark 12.1.1. Let us fix any ordering (4, j) of {1,2}. In the previous proof we considered
also the case of a suboject (E', V') of (E,V) that is an extension of (Q3, W3) by (Q;, W;) for
some ¢ = 1,2. Using the extra hypothesis given in the first part of we got that if such
an object exists, then it does not destabilize (£, V) for . If such an extra condition is not
verified, than we have to impose that (E’, V') does not exist, otherwise it destabilizes (E, V)
for af (same statement for the second part of and a; ). One can prove that (E,V)
has a subobject of this form if and only if pj o az(v) = 0, where p; is the morphism

pj : Ext'((Q3, W3), (Q1, W1) @ (Q2, Wa)) — Ext' ((Qs, W3), (Q;, W;))

induced by any quotient p; : (Q1,W1) @ (Q2, Wa) — (Q;, W;). If (Q1,W1) % (Q2, W),
p; is the projection to the j-th component (up to multiplication by non-zero scalars); if

(Q1,W1) =~ (Q2, W2), p; is any morphism of the form (a,b) for (a,b) € C? \ {0}.

So by proceeding as in the previous lemma one can prove the following result. We will not
need to use it, we just state this result for completeness.

Lemma 12.1.3. Let us fiz any pair of exact sequences as and with conditions
, respectively (12.5). Moreover, let us suppose that (Qs, Wa) # (Qi, W;) for alli =1,2,3
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and that (E,V') has a.-canonical filtration of type (2,1,1). Let us also fiz an ordering (i,7) of
the set {1,2} and let us suppose that

ki + k k ki +k k
iths S8 g St E (12.14)
n; +ng n n; + ng n

respectively
ki +k k ki + k k
it B g MR R (12.15)
n; +ng n n; + ng n

Then the following facts are equivalent:
(a) (E,V) belongs to G (ae;n,d, k), respectively to G~ (ae;n,d, k);

(b) there are no quotients (; : (E,V) — (Qi, W;) for i = 1,2 and pj o aa(v) # 0 for all
quotients pj: (Ql, Wl) D (QQ,WQ) —» (Qj,Wj).

If we replace conditions (12.14]), respectively , by

ki + k k
iths S E i (12.16)
n; + n3g
respectively
ki + k: k
iths o E oy (12.17)
n; +ng n

then (a) is equivalent to

(¢c) there are no quotients ¢; : (E,V) — (Qi, W;) for i = 1,2 and pj o aa(v) # 0 for all
quotients p; : (Q1, W1) ® (Q2, Wa) — (Q;, W;) and for all j = 1,2.

Now the second condition of (12.3) is implied by the first condition of (12.3) together with
the first part of (12.12)) (the same for (12.5) and the second part of (12.12))). Therefore, as a

corollary of lemmas [12.1.1] and [12.1.2] we get:

Corollary 12.1.4. Let us fiz any quadruple (Q;, W;)i=1,4 € H?Zl G; such that (Qq, W) #
(Qs, W3) and let us suppose that

ki k . ki+k3 k .

—< -V 1,2 - VY 1,2 12.18

Sl wieqna EE T vie), (12.18)
respectively that

k; k . ki—l—kg k .

—>—- VY 1,2 -V 1,2 12.19

Bl owienan BT vie() (12.19)

(automatically, we have that (Qq, Wy) % (Qi, W;) for i = 1,2). Then the (E,V)’s that be-
long to G (ae;n, d, k), respectively to G~ (ae;n,d, k), that have a.-canonical filtration of type
(2,1,1) and graded @?:l(Qi, W) are those induced by pairs of exact sequences as and
, such that:
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e u#0;

e @3(v) £ 0;

e there are no quotients (; : (E,V) — (Qi, W;) for i =1,2.

Now we will have to state 2 lemmas according to the relation between (Q1,W;) and
(Q2, W5). Note that the description of next lemma can be simplified by considering together
the various sets M;([u]) described below for i = 1,2,3. We prefer to use this description
because we will need it when we will globalize it below. Indeed, if the invariants (nq, k1) and
(nga, ko) coincide, then we have a natural action of Zsy to take into account. It will turn out that

such an action fixes the bundle obtained by globalizing the set Mj([u]), while it interchanges
the bundles obtained by globalizing Ma([u]) and Ms([u]).

Lemma 12.1.5. Let us fiz any quadruple (Q;, W;)i=1,... 4 € H?:l G; with numerical conditions

, respeclively , and such that:
(Q1, W) % (Q2,W2), (Qa, Wy) # (Q3,W3)

(automatically, we have that (Q4, Wy) % (Qi, W;) for i =1,2). Let us denote by u any class
of a non-split extension of the form
0 = (Qs, W) 22 (E", V") 22 (Qu, Wi) — 0. (12.20)
Having fized [p] € P(Bxt' ((Q4, Wa), (Q3,W3))), let us consider the morphisms

Bt (Qu. Wa), (Qu W) 25 But (B" V"), (QiWi)) fori=1,2

induced by the morphism (o, so that the morphism By in coincides with the pair (F%, F%)
Moreover, let us write:

My((p]) = (Bt (B, V"), (Qu W) ~ Im(5])) @ (Bst' (B, V"), (Q2, Wa) ~ (7)) ,

My () := (Bt ((B", V"), (@1, W) ~ Im(83)) & (1m(33) ~ {0})
My([p]) = (Im(B3) < {0}) & (Bt (B", V"), (Q2, Wa)) ~ Im(B3)) .

Each of these sets has a natural action of C*xC* on it (given by multiplication by scalars on
the 2 components). Then we have that the set of all the (E,V')’s that belong to GT (ae;n, d, k),
respectively to G~ (ae;n,d, k), that have a.-canonical filtration of type (2,1,1) and graded
®F_1(Qi, W;) is given by a fibration over P(Ext'((Q4, W4),(Q3,W3))). The fiber over any
point [u] in that space with p represented by is given by

M ([u]) = My([p]))/(C* x C)II
I Ma([u])/(C* x C*) I M3([p])/(C* x C¥). (12.21)
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In addition, if we write:

b:= dim Ext'(E",V"),(Q1,W1)), c:= dim Ext'((Qs, Wy), (Q1,W1)),
d := dim Ezt'(E",V"),(Q2,Wa)), e := dim Ext'((Qq, W4), (Qa, W2)),

then for every [u| we have the following description.

(a) If no (Q;, W;)’s are isomorphic for i =1,2,3, then:

M([p]) =~ (PP7L NP x (PP ) T (PP Pty x PEIT Pt o (Pt e,

(b) If (Q1, W) ~ (Q3,W3) % (Q2, W2), then

M([u]) ~ (PP7L N P72) x (P4 P T (PP P 2) x PO I P2 x (P P Y.

(c) If (Q1, W) # (Q2, W2) ~ (Q3,W3), then

M([u]) ~ PP L Py x (P4 P I (PP NPT x PO I PO X (P P2,

Proof. To any (E, V') that we want to parametrize, we can associate a triple (u, v1,v2) = (u,v),
where p has a representative as (12.20) and v = (v, 1) is as in (12.2) and (12.9). Then by
using corollary [12.1.4] the following facts are equivalent

(a) (E,V) belongs to G (ae;n,d, k), respectively to G~ (ae;n,d, k), and it has a.-canonical
filtration of type (2,1,1);

(b) u # 0, @z(v) # 0 and there are no quotients (; : (E,V) — (Q;, W;) for i = 1,2.

Now let us suppose that p # 0 and that there is a quotient (; : (E,V) — (Q;, W;) for
some i = 1,2. If (; o a; = 0, then this induces a quotient (E”, V") — (Q;, W;). Since
(Qi, Wi) % (Qa, Wy), we have that (Q;, W;) ~ (Q3,W3) and p = 0, but this is impossible in
our case. Therefore, if p # 0, then (; o a3 # 0. Therefore, we can rewrite (b) as

(a) p# 0, az(v) # 0 and there are no quotients ¢; : (E,V) — (Q;, W;) for ¢ = 1,2 such that
Gioay #0.

Since (Q1, W1) # (Q2, W3), by lemma we get that the following facts are equivalent:
(i) there are no quotients ¢; : (E,V) — (Q;, W;) for i = 1,2 such that {; o oy # 0;

(i) v; #0fori =1,2.
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By substituting in (c) we get that (a) is equivalent to:
(d) u#0,az(v) #0and v; #0 for i = 1,2.

Now the condition that @z(v) is not zero can be rewritten by imposing that v = (v, 9)
does not belong to the image of the morphism £ = (31, 82):

Ext!((Qa, Wa), (Q1, W1) @ (Q2, Wa)) =2 Ext!((E", V"), (Q1, W) & (Qa, W2))
or, equivalently, that the following 2 conditions are not verified at the same time:

e v belongs to the image of F%;

e 1o belongs to the image of F%

Now let us look at the sequence ([12.2]). The set of all possible (E”,V")’s in that sequence
is given by all possible u # 0, modulo the action of C* because (Q3, W3) % (Q4, W4); so the
(E",V")’s are parametrized by

P(Ext! ((Qa, W), (Qs, W3))).

Moreover, Aut((Q1, W1) @ (Q2, W2)) = C* x C* because (Q1, W1) % (Q2, Ws) and Aut(E”,
V") = C*. So having fixed

(1] € P(Ext' ((Q, Wa), (Q3, W3))),

we have a natural action of C* x C* on the set of all possible v = (v1,12)’s. Now such
an action restricts to an action on the set M ([u]) of all pairs (v1,12) such that v; # 0 for
i = 1,2 and such that (v1,12) is not in the image of (F%, 67%) So having fixed any point
(1] € P(Ext ((Qq, W4), (Q3,W3))) with representative for u, we have that the set of
all possible (E,V)’s that we want to parametrize is given by

M ([u]) = M([u])/(C* x C*) = (M ([p]) T Mo([u]) T Ms([p])) /(C* x C7),

where the M;([u])’s are described in the claim of the lemma. The action of C* x C* sends
every M;([u]) to itself, so this proves ((12.21]).

If we apply the functor Hom(—, (Q1, W1)) to the sequence (12.20]), we get the long exact

sequence:

-+ = Hom((E", V"), (Q1,W1)) — Hom((Q3, W3), (Q1, W1)) &,

O Bt (Qas W), (Qu, W) 25 Ext (B, V™), (Qr W) — - -

Now let us suppose that there is any non-zero morphism v from (E”, V") to (Q1, W1);
since (Q4, Wy) # (Q1, W1), this implies that (Qs, W3) ~ (Q1, W1) and that « gives a splitting
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of ({12.20), but this is impossible since p # 0. Therefore, the first space of the previous ex-
act sequence is zero, so 0! is injective. Now if (Q3, W3) 2 (Q1,W1), then B} is injective, so
dim(Im 1) = ¢; in the opposite case 33 has a kernel of dimension 1, so dim(Im 83) = ¢ — 1.

Analogously, if (Q3, W3) % (Q2, W3), then dim(Im 6722) = e; in the opposite case dim(Im @)
= e — 1, so we conclude. ]

Lemma 12.1.6. Let us fiz any quadruple (Q;, W;)i=1,... 4 € H?Zl G; with numerical conditions

12.18), respectively (12.19), and such that:
y

(Q1, Wh) = (Q2,W2), (Qa, Wi) % (Q3, W3).
Let us denote by p any class of a non-split extension of the form

0 = (Qs, W) 22 (E", V") 225 (Qu, W) — 0. (12.22)

Having fized (1] € P(Ext'((Qq, Wa), (Q3,W3))), let us consider the morphisms 51 and B2
induced by By as in the previous lemma; since (Q1,W1) =~ (Q2, Ws), we can identify those
2 morphisms. Then we have that the set of all the (E,V)’s that belong to G (ac;n,d, k),
respectively to G~ (ac;n,d, k), that have a.-canonical filtration of type (2,1,1) and graded
©r(Qi, W) is given by a fibration over P(Ezt'((Qq, Wa), (Q3,W3))). The fiber over any
point [u] in that space with p represented by s given by

M([p]) = Grass(2, H([p])) \ Grass(2, H'([u])),

where

H([u]) := Bot'(E", V"), (Q1, W1))
and H'([u]) is the subvector space of H([u]) defined as the image of @ If we write:

b:= dim Ext'(E",V"),(Q1,W1)), c¢:= dim Ext'((Qu, Wy), (Q1,W1)),

then we have that:

d Zf (Q1>W1) = (Q27 W2) ;ﬁ (Q37W3)7 then

M([u]) ~ Grass(2,b) \ Grass(2, c¢);

o if (Q1,W1) ~ (Q2, W2) =~ (Q3,W3), then

M([p]) ~ Grass(2,b) ~ Grass(2,c —1).

Proof. To any (E, V) that we want to parametrize we can associate a triple (u, v1,v2) = (u,v),
where p and v have representatives of the form (12.1)), respectively (12.2), and vy, v3 are as in
diagram ([12.9). Then by corollary [12.1.4] the following facts are equivalent
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(a) (E,V) belongs to Gt (ae;n,d, k), respectively to G~ (ae;n,d, k), and it has a.-canonical
filtration of type (2,1,1);

(b) u # 0, @3(v) # 0 and there are no quotients (1 : (E,V) — (Q1, W1).

In (b) we have omitted the case of (Q2, W2) since by hypothesis such an object is isomorphic
to (Q1,W1). As in the previous lemma, we get that (b) is equivalent to

(c) p#0,az2(v) # 0 and there are no quotients (; : (E,V) — (Q1, W1) such that ¢ oaq # 0.
Since (Q1, W1) =~ (Q2, Wa), by lemma we get that the following facts are equivalent:

(i) there are no quotients ¢y : (E,V) — (Q1, W1) such that ¢; o ag # 0;

(ii) 11 and vy are linearly independent in

H([M]) = Eth((E”v VN)7 (Qla Wl)) = Eth((Eﬁa V”)? (QQa W2))
Then we can substitute this into (¢) and we get that (a) is equivalent to
(d) p#0, @z(v) # 0 and vy, 2 linearly independent in H ([u]).

Now as in the previous lemma, a3(v) is non-zero if and only if the following 2 conditions
are not verified at the same time:

e 1 belongs to the image of F%;

e 15 belongs to the image of F%

Since (Q1,W1) =~ (Qq, Wa), we can identify 8} and 2. Therefore, having fixed [u] €
P(Ext'((Q4, Wa), (Q3,W3))), we have to remove from the set of all the (vq,15)’s that are
linearly independent in H([u]) the subset of all (v1,12)’s that are linearly independent in
H'([]) := Im 57% C H([u]). Now if we look at the exact sequence with (Q1, W) =~
(Q2, W), we get that as in the previous lemma Aut(E”, V") = C*, while Aut((Q1,W1) &
(Q1,W1)) = GL(2,C). So having fixed [u], the corresponding (E,V)’s that we want to
parametrize are in bijection with the set

M) := Grass(2, H([u])) ~ Grass(2, H'([u])).

The same dimension counting of the previous lemma proves that the dimension of H'([u])
is ¢ if (Qs3, W3) 2 (Q1,W1) and it is ¢ — 1 if (Q3, W3) ~ (Q1, W1). O

Now we give a global parametrization of the objects described before, i.e. we describe
families of schemes that parametrize various types of (E,V)’s when the graded ©%_,(Q:, W;)
varies over H?:l G; and the a,.-canonical filtration is of type (2,1,1). <Since the a.-canonical
filtration is of type (2,1,1), then the order of (Q1,W7) and of (Q2, W2) is not important. As
we said in remark [12.0.2] we will state only the global results for the case when (nq, k1) =
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(ng, k2) = (n3, k3); the cases when this condition does not hold are actually simpler to manage
and they are not needed for computing the Hodge-Deligne polynomials of G(«;4,d,1).

Let us denote by ®&1_;(Q;, W;) a fixed graded with conditions , respectively
and such that (n1, k1) = (n2, k2) = (n3, k3); in this case the first condition of (12.18), respec-
tively of (12.19), implies the second one, so if (n1, k1) = (n2, k2) = (n3, k3) imposing (12.18),
respectively is equivalent to imposing that:

k k
el (12.23)
ni n

respectively that
k k
s 2 (12.24)
ni n

If (Q1, W1) # (Q2, Wa), then by lemma|l2.1.5/the corresponding (E, V')’s are parametrized
by triples ([u], [11], [vo]) with [u] € P(Ext!((Q4, W), (Q3,W3))) and representative (12.20) for
 and

2
(1], [va]) € M([u]) € [ PExt'((E", V"), (Qi, Wi))-
=1

We are considering the case when the (Q;, W;)’s are all of the same type for i = 1,2, 3.

Therefore we need to take into account the possible isomorphisms between them. So, having
fixed [u], we need to consider separately the following cases.

(1) If (Q1,W1) # (Q2,Ws) =~ (Q3, W3), then the roles of (Q1, W7) and of (Q2, Ws) are not
interchangeable, so we need to consider ordered pairs ([v1], [12]).

(2) If (Qi, W;) % (Qj, W;) for all i # j € {1,2,3}, then the roles of (Q1, W1) and of (Q2, W)
are interchangeable, so we need to consider unordered pairs ([11], [v2]).

Note that since the order of (Q1,W1) and (Q2, W2) is not important, we don’t need to
consider also the case (Q1, W1) ~ (Q3, W3) % (Q2, Wa).

If (Q1,W1) ~ (Q2, Ws), then by lemma|12.1.6|the corresponding (F,V')’s are parametrized
by pairs ([i], < v1,v2 >) with [u] € P(Ext!((Q4, Wa), (Q3, W3))) and representative (12.22)
for p and

< vy, >€ M([p]) € Grass(2, Ext'((E", V"), (Q1, W1))).

Having fixed [u], we need to consider separately the following cases.

(3) If (Q1, W1) ~ (Q2, W2) % (Q3, Ws3), then the corresponding (E,V')’s are parametrized by
a difference of grassmannians (see lemma (12.1.6));
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(4) If (Q1,W1) =~ (Q2, W) ~ (Q3,Ws3), then also in this case the corresponding (E,V)’s are
parametrized by a difference of grassmannians, but with different dimensions than the

previous one.

The 4 cases are taken into account by propositions[7.5.1] [7.5.2] [7.5.3] and [7.5.4] respectively;
we give below the proofs of those 4 results.

Proof of proposition[7.5.1. Let us fix any sequence (a,b,c,d) € N* and let us consider the
locally closed subscheme of G x G4 defined as:

Uy = {t € G3 x Gy s.t. dim Ext! (5, a)"(Qa, Wi, (B, P3)* (93, W3)s) = a},

where p3 and pg are the projections from G5 x G4 to its factors. The numerical condition

(112.23)), respectively ([12.24]), prove that for every quadruple (Q;, W;); € Hj‘zl G; we have that
(Q4, Wy) # (Qi, W;)Vi=1,2,3. Therefore, we have in particular that

Hom((}, pa)*(Qa, Wa)t, (s, 93)* (D3, W3)i) = 0

for all ¢ in Gy x G4. So we can apply proposition for r = 2 and we get that there is a
finite disjoint covering {Um}l of U, by locally closed subschemes; for every ¢ there is a locally
free sheaf on Uaﬂ-:

Vv

Hei = Ext}rﬁ ((ﬁ27ﬁ4)*(Q47W4), (ﬁé,ﬁs)*(é?,,ws))

a;t

and a projective bundle

Sba;i : Ra;i = P(’}:[a;i> — Ua;i - Gg X G4

with fibers isomorphic to P4~!. By abuse of notation, we denote by Pa;i also the composition
I:Z(m- — G3x Gy. Moreover, there exists a family of classes of non-split extensions parametrized
by Ra;i:

A~ ~ * /A ~ %[ A A Q2:q:
0 — (‘Pg;i, @a;i) (pg7p3) (Q?M W3) ®Ra;i OR‘N(l) 2_}
Q2:q:4 5 % B He A ~ ~ ~ ~ A ~
2L (EL Vi) S (Blss Pan)” (Bl Pa)* (Qa, Wa) — 0. (12.25)

Such an extension is universal in the sense of corollary [4.4.4] Now let us fix any index 4,
let us consider the projections

P1:G1 X Ry — G1, P34 : G1 X Ry — Ry

and let us define the following scheme:

Uapedi = {t € G1 x Ry s.t. dim Ext' ((phy, p31)" (Entss Vet (51, 51)* (Q1, Wh)y) = b,
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dimn Bxt" (P, P31)* (Plssr Pat) " (B a)"(Qa, Wae, (B, P1)"(Qu. Wi)e) = e,
dim Ext' ((phy, 31) " (Elkis Viti)es (Plsgs $30)* (Pl Pasi)™ (B, B3)* (Q3, W )e) = d,
Hom ((phy, 34)* (Plsis Pazi)* (B 3) " (Q3Wa)e, (81, 51)* (1, Wh)e) = 0}
By proposition , this is a locally closed subscheme of G‘l X Ra;i. Moreover, by applying

several times lemma , we get that it has a finite disjoint locally closed covering {Ua,b,c,d;i’ j }
such that all the following sheaves are locally free on Ua’b’c’d;m and commute with base change:

E(i,b,c,d;i,j = gwt}rﬁ bedeii ((ﬁg4vﬁ34)*(ég;i7 f)(lzl;i)v (ﬁllaﬁl)*(Qla Wl)),
a,0,C,a;%,7
Elpeaig = €atry (e 3a)" (g @ust) (0, a)" (Qa Wa). (51 P1)" (Q1. M)
a,0,¢,d;?,3

2 L 1 ~f ~ xS I
Ea,b,c,d;i,j = 5xt7rﬁ o ((p341p34) (ga;i7 Va;i)’
a,b,c,d;i,j

(P D34) " (Phsis Pasi)™ (D, )" (D3, W3)> :

Moreover, by base change we have that also the following sheaf is locally free:

F? = S:Ut}p <(ﬁ§4>ﬁ34)*(¢g;i> @a;z’)*(ﬁﬁyﬁ@*(é%wﬂv

ab,c,dii,j Ua,b,c,dsij
(o B30)" (s $ass) (5 55)" (O3, W) ) = P

In addition, by base change, lemma and definition of (Afaﬂ-, also the following sheaf is

locally free of rank 1:

Gapedig = Homz, ) ((ﬁé4,ﬁ34)*((%;ia Gaii)” (P, 03)" (L3, Ws) @ Op (1)),
(Pass D3a)* (Phis Bas)* (B, )" (Q3,4%)) (12:26)
By construction of Ua,b,c,d;i,j for every point t of Ua,b,c,d;i,j we have that
Hom ((Pha, f34)" (Ells: Via)os (751" (Q1, W) ) = 0,
(12.27)

H0m<(ﬁg4vﬁ34)*(gg;ia Vg;i)b (ﬁé4>]§34)*(¢fl;i7 @a;i)*(ﬁg>ﬁ3)*(g37 W3)t> =0
(see the end of the proof of lemma [12.1.5)). Moreover, by construction we have already said
that for [ = 1,2 the sheaf thb’qd;i’j commutes with base change. Therefore, by proposition

and corollary we have that there exists a projective bundle

~1 H1 1 A
Soa,b,c,d;i,j : Pa,b,c,d;i,j = P((Ea,b,c,d;i,j)v) — Ua,b,c,d;i,j

and a universal extension (in the sense of corollary {4.4.4)):

A1 Al A A 3A
0— (Spa,b,c,d;i,j?@a,b,c,d;i,j)*(pllapl)*(leWl) ®Palbcd»ij Oﬁalbcd”(l) -
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51 1 A1 51 S 511>
— (ga,b,c,d;i,ﬁ Va,b,c,d;i,j) — (@a,b,c,d;i,ﬁ soa,b,c,d;i,j)*(pi/}47p34)*(gtlll;w V;/;i) —0 (1228)

parametrized by 15; Moreover, there exists a projective bundle

,b,¢,d51,5°

~2 H2 (12 2
Soa,b,c,d;i,j : Pa,b,c,d;i,j = P((Ea,b,c,d;i,j)v) — Ua,b,c,d;i,j

and a universal extension

~ / ~ A A A ~ A A SA N
0— (Soz,b,c,d;i,jv ‘P?L,b,c,d;i,j)*(pgzlap34>*(§0£1;i7 Pasi)* (D3, 3)*(Q3, WV3) ®p2 .y Oﬁgbc d:ij(l) -
52 2 29 2 AN S
— (Ea,b,c,d;i,j7 Va,b,c,d;i,j) - (@a,b,c,d;i,j? spa,b,c,d;i,j)*(p/34’p34)*(gclL/;h VL/z/;z') =0 (1229)

parametrized by ]5[12

b Now let us apply the functor

’Home

N (—, (15/17131)*(@1,)/\}10
a,b,c,d;i,j

to the pullback via p3y4 of the exact sequence ((12.25). Then we get a long exact sequence as
follows:

— Homg, ((15%4,1334)*((%;“ Paii) (03, 93)" (Q3, W) ®p  Op (1)),

a,b,c,d;i,j

(ﬁllvﬁl)*(ghwl)) N

st A~ A NK (oA ~ (Al A Nk (A A A A N A A ﬂl?‘”
— Eatr ) dv,((pé4,p34) (Pair Pasi) " (Py, Pa)™ (Qa, W), (B, D1) (QLWO) =4
a,b,c,d;i,j
'B%;a'ig 1 A~/ ~ *g// Y/ A A Nk A A
; xtwf] bedii (p347p34) ( a;i7va;i)7<p17p1) (Qlawl) > (1230)
a,b,c,dsi,j

By the last line of the definition of Ua,b,c,d;i,j and base change, the first sheaf of the previous
sequence is zero. Now by the previous construction both the second and the third sheaf of the
previous sequence are locally free, so we can rewrite that sequence as an injective morphism
of vector bundles:

1 .l il
Bt Fapedij = Lapedij

So it makes sense to consider the projective bundle over U, ¢ 4. :

A1 1 A1
a,b,c,d;i,j = P((Fa,b,c,d;i,j)v) - Pa,b,c,d;i,j‘
Let us also apply the functor
Homﬂfja boe.dsig (_7 (ﬁgzp ﬁ34)*(¢;;i7 @a;i)*(ﬁgv ﬁ?))*(QA?)y W?)))

to the pullback via p3y4 of the exact sequence ((12.25). Then we get a long exact sequence as
follows:
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C— /Homwﬁa biediig ((ﬁ/347]534) (ga gR) Vclnl ) (ﬁg547ﬁ34)*(¢;;i7 %;i)*(ﬁé,ﬁg)*(Qs, W3)) —

— Homﬂ” ) (1%7;47]534)*((@;;7;7@a;i)*(ﬁgaﬁS)*(é37w3) ®R B Ofg (1))7
U a;i a;i

a,b,c,d;i,j

2

(Pass 34)* (Plis Bas)” (B, 53" (Q3, W) )

62 N R R R R R N ~
— Eaty, j ((p§4,p34)*(sofl;i, Pasi)* (Dys Pa)" (Qa Wa),

~ ~ X/ A A~ X/ A N ﬁ ai
(D545 D34)™ (Przi» Pasi) ™ (D5, P3)” (Qs,W3)) =

5 as ~ ~ ~ ~ * (A ~ kAl A Nk (A A
2 eatt (P Psa) (Els Vike), (Bhas Bs)” (Bl Bas)* (B, Bs)* (O, W) ). (12.31)

Ua ybyc,di, g

By (12.27) and base change the first sheaf is always zero, so 62 is injective. Moreover,
the second sheaf coincides with G’Z bedsijr SO it is locally free of rank 1. By the previous
construction both the third and last sheaves of the previous sequence are locally free, so we

can rewrite that sequence as an exact sequence of vector bundles:

52 2 52(11

— F

2
0— G a,b,c,d;i,j E ,b,¢,d57,5°

a,b,c,d;i,j
Then the rank of 62 - is constant, so its image Fa be i, 18 locally free of rank a — 1. So

it makes sense to con81der the projective bundle over Umb’c’dl

A~ 72 A 2
Q?L,b,c,d;i,j = ]P)((Fa,b,c,d;i,j)v) - Pa,b,c,d;i,j‘

Now let us consider the following fiber product:

A1 pr2 H2 A2
Ry pedisg Pavedii > Qapedii
~2
pri O Pa,b,e,dii,j
~1
A~ ~ spa b,c,d;i,j A
1 1
Pa,b,c,d;i,j N Qa,b,c,d;i,j Ua7bzcvd;ivj'

Then we consider the pullbacks of the sequences (12.28) and (12.29) via pri and pro

respectively. We sum the 2 new extensions and we get an extension parametrized by Ra boeadsi
of the form:

0— (Q1, W) @ (@3, W3) = (Eapediy Vabedij) — (5a WV i) =0,

where the objects on the left and on the right are suitable pullbacks of the families (Ql, Wl)
for 1 = 1,3 and of (£”,

CLl’

V;’; ). Given any point r in R! let us denote by

a,b,c,d;i,j

— (Q1,W1) & (Q3, W3) — (E, V) = (E", V") = 0
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the restriction of the previous sequence to r. We denote by v = (v1,v3) the class of this
extension. By construction, (E”, V") sits in a non-split exact sequences of the form

0= (Qs, W3) 22 (B", V") 2 (Qa, Wa) — 0;

we denote by p the class of this extension. Then by construction we get that v = (v, v3)
belongs to the set M ([1]) described in lemma[12.1.5] Now let us assume condition (12.23) (the
proof for condition is analogous). Then lemma proves that (E,V’) belongs to
G (ae;n, d, k), respectively to G~ (ae;n,d, k). So by the universal property of such a scheme
we get an induced morphism

wébﬁdﬂJ:‘RéﬁﬁdﬂJ — G (ac;n, d, k).

Again by lemma [12.1.5] such a morphism becomes injective once we quotient by the free
action of PGL(Ny) X --- x PGL(Ny); we denote the induced morphism by

1 . pl + .
wa,b,c,d;i,j : Ra,b,c,d;i,j G (Oéc, n, d7 k)

This construction generalizes the pointwise construction of the set

M ([u)) /(€ x ©°)
described in lemma [12.1.5] Analogously, we can construct the following fiber products

~

2 A2
R pedii g a,b.edsinj
~2
0 Pa,bc,dsiy
~1
N A Pab,c,dii,j N
1 1 a,0,c,d;t,]
Pa,b,c,d;i,j ~ Qa,b,c,d;i,j Ua,bp,d;i,ja
and
53 52 A2
R e dii g Pabedii ™ Qapedij
~2
O Pab,c,dsi,
1 Pab.edsi 0 N
a7b7cyd;i7j a7b7C7d;Z’j

that generalize the pointwise constructions of M;([u])/(C* x C*) for [ = 2,3. The construction
of the families parametrized by these schemes is analogous to the previous one, so we omit

the details. This is enough to conclude. O
Proof of proposition [7.5.2 First of all, let us construct schemes of the form R}L bedesij: these

1

are defined similarly to the schemes of the form Ra bedii,j

of proposition |7.5.1L The only
significant differences are the following. |
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e Having fixed any index 4, we consider the projections

o él X ég X Ra;i — él forl =1,2, ﬁ34 : Gl X GQ X Ra;i — Ra;i

and we define a scheme

(A]a,bycydye;i ={te Gy x Gy x Ra;i s.t.
dim Ext' (4, P31) " (Ells Vi)t (01, 51)*(Q1, Wa)i) = b,
dim Ext! (g, P34)" (@i Pazi) ™ (B )" (Qas W, (7, 51)* (1, Wi ) = ¢,
dim Ext" (P, P34)" (€l Virg)e, (B, P2)*(Q2, Wa)y) = d,
dim Ext!((phy, P34)* (Grei» Pasi) ™ (B, Pa) " (Qas Wiy, (B, B2)* (Q2, Wa)e) = e,
Hom (P4, $34)" (Plysss Pasi)* (B, D3)* (Qs, Wa)e, (57, 51) " (Qi, Wi)e) =0 VI=1,2,

Hom((p}, 1)* (91, W1)t, (Db, P2)* (Q2, Wa)i) = 0}.

~

e The sheaves E! and Fé’b’c’dmj for [ = 1,2 are replaced by

abedsi,j
Bhpeacis = Erty, (e bsa)" (€ Vi) (.57 (Q0 M)
Fclt,b,c,d,e;i,j = 5$t71r0aﬁb7c’dﬁem ((%472534)*(%;1’» Gasi)* (P P2)* (D4, Wa), (B, 1) (D1, Wz))
and the line bundle Gg,b, cdiij 18 replaced by the zero sheaf.

e the morphisms 81, and 32, are both injective. For | = 1,2 we define consequently
the projective bundles

A

Al . pl o l \Y 3
(pa,b,c,d,e;i,j . Pa,b,c,d,e;i,j T P((Ea,b,c,d,e;i,j) ) Ua,b,c,d,e;i,j

and the subbundles

~ A ~

[
Qa,b,c,d,e;i,j = P((Fa,b,c,d,e;i,j)v) - Pa,b,c,d,e;i,j‘

Finally, we define the various schemes R! for I = 1,2 in the same way of the

a7bﬁc7d’e;i’j
corresponding schemes in the previous proof (we don’t need to consider the schemes for
[ = 3, see below) and we get families of extensions over them analogously to the previous

case.
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Now let us assume condition (12.23)) and let us consider the induced morphism

w;,b,c,d,e;i,j : RclL,b,c,d,e;i,j = Rtlz,b,c,d,e;i,j/(PGL(Nl) XX PGL(N4)) — GJr(ac; n7d’ k)

If we impose that (b,c) # (d,e), then we get that such a morphism is injective and that

1 1 . . .
abic.dei and of Wa.d.eb i coincide, so we have to consider only those se-

quences (a, b, ¢, d, e) such that (b,c) < (d,e) (with lexicographic order). If (b,c) = (d, e), then
w;,b,c,b,c;i,j

the proposition. The description of the Zs-invariant covering of U, p ¢ d,e::,j follows the lines of

the images of w
is injective only up to quotienting by an action of Zs described as in the claim of

the previous proofs for analogous cases.

2
a‘7bﬁc7d)e;i)j ’

every choice of indices (a,b,c,d,e) € N° their images via the induced morphisms w

For what concerns the schemes of the form R the description is as follows: for

2
a,b,c,d,esi,j
are all disjoint in G (ae;n,d, k). Differently from the previous proposition, we don’t need
3
a,bye,d,esi,j

with the image of a scheme of the form deebc,”. Moreover, also if (b,¢) = (d,e) in this

case there is not any induced action of Zg since the roles of (Q1,W1) and of (Q2, Wa) are
not interchangeable: indeed the objects [v1] and [v»] belong to complementary spaces, so we

any scheme of the form R because the image of any such scheme would coincide

cannot interchange them. Therefore also the morphisms of the form wg bebesij ALC injective,

so we conclude. O

Proof of proposition[7.5.3 The construction of these spaces follows the lines of the proof of
proposition in order to get a family of scheme {]A%M}Z and universal families of extensions
as in (|12.25)). Now let us fix any index i, let us consider the projections

p1: G % Ra;i — G, P3a: Gy X Ra;i — Ra;i

and let us define the following scheme

Oa,b,c;i = {t S él X Ra;i s.t. dim Eth((ﬁ/347ﬁ34)*(gC/L/;ia fjg;i)h (ﬁllvﬁly((éhwl)t) = b7

dim Ext! ((psg, H34)" (@i Pazi)* (B 1) " (Qa, Wi, (91, 1) (Q1, Wh i) = e,
Hom((ﬁg47ﬁ34)*(¢/a;ia @a;i)*(pé’ﬁ?))*(@& W3)t) (ﬁ;aﬁl)*(élv Wl)t) - O}
By proposition , this is a locally closed subscheme of G1x Ra;i. Moreover, by applying

several times lemma , we get that it has a finite disjoint locally closed covering {Umb,e;m }
such that the following sheaves are both locally free on Ua,b,m j and commute with base change:

Eopei = Exth - _((ﬁ§4,ﬁ34)*(ég;ia%/;i), (ﬁllaﬁl)*(glawl)>7
a,0,c51,9
Fopesij = 5$t71r0 . ,((1334,]534)*(%;1'7@a;z’)*(ﬁLm)*(Q%W@’ (ﬁ/bﬁl)*(Qlan))-
a,b,c51,3

By construction of ﬁa,b,c;i’j for every point t of such a scheme we have that:
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Hom <(ﬁé47 ﬁ34)*(éclbl;i7 ]A}clz/;i)h (ﬁllvﬁl)*(éh Wl)t) =0
(see the end of the proof of lemmall2.1.5)). Moreover, by construction we have already said that
the sheaf EAmb,c;i,j commutes with base change. Therefore, by proposition and corollary
there exists a grassmannian fibration

92;a,b,c;i,j : Qa,b,c;i,j = Gra53(27E(\1/7b,c;i7j) — Ua,b,c;i,j

and a universal extension (in the sense of corollary 4.5.4)) parametrized by Qa,b,c;m

0— (A/Q;a,b,c;i,jv é?;a,b,c;i7j)*(]5,1,]51)*(@17 Wl) ®Qa,b,c;z‘,j MQ;a;i -
— (éa,b,c;i,j; f)a,b,c;i,j) - (éé;a,b,c;i,ﬁ éQ;a7b7C;i7j)*(]§g47ﬁ34)*(£(/1/;i7 f}c’z/;i) - 07 (1232)

where Ma,,; is a locally free sheaf of rank 2 on Qa,b,cﬂ-’j. Now let us apply the functor

(= 51" (Q1, W)

to the pullback via psq of the exact sequence (12.25). Then we get a long exact sequence as in

(12.30)); the only differences are that the space U, 4,5 is replaced by Ua,b,c;i,j and that the
morphisms p; and ps4 now have a different source. By construction of Ua,b,c;m the first sheaf

Homr,

a,b,c;i,j

of such a long exact sequence is zero. Moreover, by the previous construction both the second
and the third sheaves of that sequence are locally free, so we can rewrite such a sequence as
an injective morphism of vector bundles:

1 . f 3
62,&,1 : Fa7b7c;i7j — Ea7b7c;i7j'

So for every (a,b,c;1,7j) it makes sense to consider the scheme

Rop.cij = Grass(2, E(\Z/’bm’j) ~ Grass(2, Fg{bm,j) C Qab,eiij

together with the fibration to Umb,c;m given by the restriction of ég;a7b7c;i7j. By lemma [12.1.6}
for every point r € }/\Za,b,c;i’j we have that the sequence ([12.32)) restricts to an exact sequence

0— (Q1,W1)%2 = (E,V) = (E", V") =0,

where the central object belongs to G*(ac;n, d, k), respectively to G~ (ag;n, d, k), and it has
ac-canonical filtration of type (2,1,1). Then we conclude as usual. O

Proof of proposition [7.5.4] The proof of this proposition is similar to the proof of proposition
[7.5.3] so we omit it. We only remark that we don’t need an index ¢ since this is equal to a
by definition of the set G’ in this case; the invariant a — 1 that replaces a = ¢ in the second
grassmannian is a consequence of the second part of lemma [12.1.6 O
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12.2 Canonical filtration of type (1,2,1)

In this case the a.-canonical filtration is given by:

0cC (El,Vl) C (EQ,‘/Q) C (E3,V3) = (E, V),

where (Eq1, V1) =: (Q1,W1), (E2, Va)/(E1, V1) =~ (Q2, Wa) & (Q3, W3) and (E,V)/(Es, Vo) :=
(Qq4, Wy). All the (Q;, W;)’s for i = 1,--- ,4 are a.-stable coherent systems with the same
ac-slope p. For the computations of chapter [15| we will only need to restrict to the following
2 subcases:

o (Q4,Wy) 2 (Qi, W;) for i = 1,2,3 (this will be needed for the case of GT(a.;4,d,1));

o (Q1,W7) % (Qi,W;) for i = 2,3,4 (this will be needed for the case of G~ (ac; 4,d, 1)).

12.2.1 First case

In this subsection we will consider the first case. We can associate to every (F,V) that
we want to parametrize a pair of exact sequences of the form:

0 — (Qa, W) & (Qg, W) 22 (B, V") 25 (Qu, Wy) — 0; (12.33)
0= (Q1, W) 25 (B,V) 25 (5" V") = 0. (12.34)

We denote by p and v the classes of those 2 exact sequences. If (E, V') has a.-canonical
filtration of type (1,2,1), then it has certainly the following proper a.-semistable subobjects
with ac.-slope u:

(a) (Q1,W1), that is the only a.-stable one;
(b) an extension of (Q;, W;) by (Q1,Wh) for i = 2,3,
(c) an extension of (Q2, Wa) @& (Q3, W3) by (Q1, W1).

This is not a complete list, see lemma [12.2.2| If we consider only those subobjects, we get
that the following conditions are necessary (but in general not sufficient) in order to have that
(E,V) belongs to Gt (ae;n, d, k):

ﬁ<k ki + k; k k1+k2+/€3<ﬁ

, < — Vie{2,3}, .
n1 n ny + n; n ni + ng + n3 n

(12.35)

Analogously, we get that the following conditions are necessary (but in general not suffi-
cient) in order to have that (E, V') belongs to G~ (ae;n, d, k):

k k k k; k . ki+ko+ k k
71 > , 1+ >— Vic {2’3}, w > —. (1236)
ni n niy +n; n ni + ng +ns n

Now let us consider the following long exact sequence obtained by applying the functor

Hom(—, (Q1, W) to (1233):
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- Hom((E",V"), (Q1,W1)) — Hom((Q2, Wa) @ (Q3, W3), (Q1, W1)) —
— Bxt((Qu, Wa), (@1, W1) 2

Py Bt (B, V), (Qr, Wh)) 5 Ext'(Qa, Wa) @ (Qs, W3), (Qu, 1)) — - (12.37)

If we apply ag to v we get a diagram of this form:

ol B1

00— (@1, W) (E,V) (E", V") 0 v
% ) % o2 a2
0 (@ W)~ (Ba Vo) T BL,QuW) 0 @) gy
By the snake lemma and we get a short exact sequence
0= (B2, Vo) = (E,V) =5 (Qa, Wa) = 0. (12.39)

Again by the snake lemma, eventually by replacing n with nop for a suitable automorphism
@ of (Qa, Wy) (i.e. ¢ = X-id(g,w,) for some A € C*), we have that

n = 52 o ﬁl. (12.40)
We can identify p with a pair

2
(2 13) € @ Bt ((Qu, Wa), (Qi, W) ).
i=1

For every ¢ = 2, 3, this identification gives a diagram of the form:

« B
0 —— B}, (Qi, W) — (E", V") —— (Q1, Ws) ——— 0 p
pry 5% i 5% pri
o Bai
0 — (Qi, Wy) —— (Eui, Vi) —— (Qa, Ws) ——— 0 i

(12.41)
where pr; is the quotient (Q2, Wa) @ (Q3, W3) — (Q4, W;) for ¢ = 2,3. By the snake lemma,
for every i = 2,3 we get an induced short exact sequence

0= (Q, W) 25 (B V") s (Ey, Vi) — 0, (12.42)

where j is the index in {2,3} different from i. Having fixed all those notations, let us state
and prove the following results.
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Lemma 12.2.1. Let us fir any pair of exact sequences as and (12.84)) and let us
denote by 1 and v their classes. Let us suppose that (Qq, Wy) % (Qi, W;) for all i = 1,2,3.

Then the following facts are equivalent:

(a) (E,V) has a.-canonical filtration of type (1,2,1);

(b) for all i = 2,3 and for all morphisms ~; : (Qi,W;) — (Ea,Va2) we have B} o v; = 0;

moreover, u % 0.

Proof. Let us assume (b) and let us prove that (a) holds. By diagram ((12.38), we get a
filtration of (E, V) as follows:

0 C (Q1,W1) =: (B1,V1) C (Fa,Va) C (E3,V3) = (E,V). (12.43)

The second line of proves that (Eg, Va)/(E1, Vi) = (Q2, W2) & (Q3, W3); moreover,
by we have (E,V)/(E2,Va2) = (Q4, Wy). So for all i = 1,2,3 the objects of the form
(Ei, Vi) /(E;—1,V;—1) are a.-stable or a.-polystable. Then by proposition we get that
is the ac-canonical filtration of (E, V) if and only if condition (c) of that proposition
is satisfied. In our case the index t is equal to 3, gra.(E,V) = @, (Qi, W) and

grac (B, V)/(Er, V1)) = gra.(E", V") = (Q2, W2) © (@3, W3) ® (Qa, W)

So ([12.43)) is the a-canonical filtration of (E, V) if and only if the following two conditions
hold:

(i) forall i =1,---,4 and for all morphisms 7, : (Q;, W;) — (E,V) we have p; o7, = 0;

(ii) for all ¢ = 2, 3,4 and for all morphisms 7; : (Q;, W;) — (E”, V") we have 2 075; = 0.

Let us consider (ii): if there exists 7; such that 2 07; # 0, then this is equivalent to have
that = 0. So (ii) is equivalent to imposing that pu # 0.

Now let us consider (i) and let us suppose that there is a morphism 7; : (Q;, W;) — (E,V)
such that 81 o3; # 0 for some ¢ = 1,--- ;4. Let us consider the sequence and the
identity . If no7A; #£ 0, then fo 0 81 07; # 0, so we get that #1 o7 is a splitting of
, so = 0. If no7d; = 0, then by exactness of there exists a non-zero morphism
vi + (Qi, W;) — (FE2,Va) such that § oy, = 7;. Now by commutativity of and by
definition of ;, we get:

ago oy =P1odoy =pio7 #0.

Then v; : (Qi, W;) — (FE2,V3) is such that 8] ov; # 0. Since 3] o ~y; # 0, then the index
i belongs to {2,3}. So we have proved that if (b) holds, then (12.43) is the a.-canonical
filtration of (E,V).



230  12. Parametrization of objects with canonical filtration of type (2,1,1), (1,2,1) and (1,1,2)

Conversely, if © = 0, then the a.-canonical filtration of (E, V') can be of type (1,3), (2,2),
(3,1) or (4), but not of type (1,2,1). If there exists a morphism ~; : (Q;, W;) — (F2, V) for
some ¢ = 2,3 such that 5] o; # 0, then by diagram we get that (E,V) contains a
suboject of the form (Q1, W1) ® (Q;, W;), so the a.-canonical filtration of (E, V) cannot be of
type (1,2,1). So we have proved that (a) and (b) are equivalent. O

Lemma 12.2.2. Let us fir any pair of exact sequences as and (12.34)) and let us
suppose that

ki k

— < — e {1,2 12.44

Mo ¥ vie{123), (12.44)
respectively that

ki k

— > — € {1,2,3}. 124

ni>n Vie{1,2,3} (12.45)

Let us also suppose that (E,V') has a.-canonical filtration of type (1,2,1). Then the fol-
lowing facts are equivalent.

(a) (E,V) belongs to Gt (ae;n, d, k), respectively to G~ (ag;n, d, k);
(b) for all i = 2,3, there are no quotients ¢; : (E", V") — (Qi, Wy).

Proof. Let us suppose that we use conditions ({12.44)); the other case is completely analogous.

If we assume those conditions, then a direct check proves that conditions (12.35)) are
satisfied; in particular by using the last part of (12.35)) together with ({12.44]) we get that

ki kk
B2 ™ vi=1,23
n; n ny

Therefore, (Q4, Wys) # (Qi, W;) for all i = 1,2,3 (so we are in the hypothesis of lemma

221

Now let us suppose that there is a quotient ¢; : (E”, V") — (Q;, W;) for some i = 2,3.
Then by ((12.44)) we get that the kernel of (; o 31 destabilizes (E, V) for o .

Conversely, if (E,V) is not «f-stable, then there exists a proper subsystem (E’,V’) of
(E,V) that destabilizes it for af. Such an object is necessarily a.-semistable and the length
r of any a.-Jordan-Holder filtration of (E’, V') can be equal to 1,2 or 3, so we have to handle
all these cases. By definition of a.-canonical filtration of type (1,2,1), we have that (Q1, W7)
is the only ac-stable suboject of (E,V), so it is a suboject also of (E’, V). So if r = 1, then
we have that (E', V') = (Q1, W1), so it does not destabilize (E, V) for a because of (12.35).

Length of any «a.-Jordan-Hélder filtration of (E’,V’) equal to 2. If (E', V') is an
extension of (Q;, W;) by (Q1, W1) for some i = 2,3, then it does not destabilize (E, V) for o}
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because of conditions (12.35)). So let us suppose that (E’, V') sits in an exact sequence of the
form

0= (Qu,W1) -5 (B, V') 25 (Qa, Wy) = 0 (12.46)

and let us denote by v the inclusion of (E',V’) in (E,V). Then let us consider the exact
sequence ([12.39) and let us distinguish the following 2 cases.

e If o~ = 0, this implies that there exists an embedding 7/ : (E', V') — (Es, V2) such
that v = d o 4/. The graded of the first coherent system is (Q1, W) @ (Q4, Wy) and the
graded of the second one is @®3_;(Q;, W;). Since (Q4, Wa) % (Q;, W;) for i = 1,2,3, we
get a contradiction, so this case cannot happen in our hypothesis.

e Let us suppose that novy : (E', V') = (Q4, Wy) is non-zero. Then by (12.40)) we get that
P20 P10y #0. Since (Q1, W1) % (Q4, Wy), then

Baopfroyoa=0.

So by exactness of we get an induced morphism " : (Q4, Wa) — (Q4, Wy) such
that v o 8 = B30 81 oy # 0. In particular, this implies that 4" # 0, so it is of the form
A - id(@,,wy) for some A € C*. Since ff3 0 81 0y o a = 0, then by exactness of
we get an induced injective morphism " : (Q1, W1) — (Q2, W2) @ (@3, W3) such that
as oy" = By oo« (this proves also that (Q1,W;) is isomorphic to (Qa, W2) or to
(Q3,W3)). Then we get a commutative diagram with exact rows as follows:

0 (Qu. W) —— (B V') —2 s (Qas W) 0
~" n vy N
0 B, (QLW1) —2 (B, V) — 2 (Qu, W) 0.

The second line is a representative for u; the previous diagram proves that p is in the
image of

7" Ext' ((Qa, Wa), (Q1, Wh)) — Ext! ((Qa, Wa), (Q2, W2) & (Q3, Ws)).

Then if we denote by pr; : (Q2, Wa) & (Q3, W3) — (Q;, W;) the cokernel of 4" for some
i = 2,3, then we get that pr;(u) = 0, so we have a commutative diagram where the
second line is split:
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s B2

0 ®y(Q1, Wi) —— (B, V") (Qa, W) 0
pri m pr %
0 (Qi, Wi) — (Qi, W5) @ (Qu, Wy) — (Q4, Wa) 0.

In particular, we get a quotient (E”, V") — (Q;,W;) for some i = 2,3, so (b) is not
satisfied.

Length of any a.~-Jordan-Hélder filtration of (E', V') equal to 3. In this case the
quotient (E,V) := (E,V)/(E',V') is an a.-stable coherent system. Since (E’, V') contains
(Q1,W1), then (E, 17) is isomorphic to (Q;, W;) for some i = 2,3,4. Using the last condition
of (12.35), if i = 4 then (E', V') does not destabilize (E,V) for af. If i is equal to 2 or 3,
then conditions imply that (E’,V’) does destabilize (F,V) for af. Let us suppose
that (E,V) has such a subobject and let us denote by ¢; : (E,V) — (Q;, W;) the induced
quotient for ¢ = 2 or 3. Let us consider the exact sequence (12.34): if (; o a3 # 0, then

(Qi, W;) ~ (Q1,W1) and that sequence is split, so we get that

(Ev V) = (Qh Wl) 2] (E”7 V”) > (Qh Wl) S2) (Q27 WQ) 2] (QS, W3)>

so the a.-canonical filtration of (F,V’) cannot be of type (1,2,1), so this is impossible by
hypothesis. Therefore, (; o a1 = 0, so we get an induced morphism ¢} : (E”, V") — (Q;, W5)
such that ¢; = ¢} o /.

So we have proved that if (a) is not satisfied, neither is (b). Together with the first part
of the proof, this is enough to conclude. O

We remark that the second condition of (b) in lemma [12.2.1] (i.e. p # 0) is implicated by
condition (b) of lemma [12.2.2| Therefore, as a corollary of those 2 lemmas we get:

Corollary 12.2.3. Let fiz any quadruple (Q;, W;)i=1,.4 € H?:l G; and let us suppose that con-
ditions , respectively , are satisfied (automatically, this implies that (Qq, Wy) %
(Qi, W;) for all i = 1,2,3). Then the (E,V)’s that belong to GT(ae;n,d, k), respectively to
G~ (ae;n,d, k), that have a.-canonical filtration of type (1,2,1) and graded &}_,(Q;, W;) are
those induced by pairs of exact sequences as (12.33) and (12.34)), such that:

e for all i = 2,3 there are no quotients ¢; : (E", V") — (Qi, W;);

e for all i = 2,3 and for all morphisms ~; : (Qi, W;) — (FE2,Va) we have B} o~; = 0.

Now we have to state 2 lemmas according to the relation between (Q2, W) and (Q3, W3).
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Lemma 12.2.4. Let us fix any quadruple (Q;, W;)i=1,... 4 € H?Zl G; with numerical conditions

12.44)), respectively , and such that:

(Q2, Wa) # (Q3,W3)
(automatically, this implies that (Q4, Wy) % (Qi, W;) for all i = 1,2,3). Let us denote by p;
any class of an extension of the form
0— (Ql, Wz) ﬂ (E4i,V4i) &) (Q4,W4) — 0 (12.47)

for i =23 and let us denote by p the class of the extension

0= (Q2, W2) @ (Qs, W) 5 (B, V") 25 (Qu, W) — 0 (12.48)
obtained by po and ps. Having fived

3

([n2l, [1s]) € EDP(Bxt'((Qa, Wa), (Qi, Wi))),

i=2
let us consider the morphisms
Bat ((Esi, Vi), (Qu, W) = Bot' (B, V"), (@1, W)
fori = 2,3 induced by the morphisms n; of diagram (12.41). Let us consider the set M ([u2], [p3])
defined as
E.’I?tl((E”, V”)v (Qb Wl)) N (Im N2 + Im %) .

Then we have that the set of all the (E,V)’s that belong to G (ae;n, d, k), respectively to
G~ (ae;n,d, k), that have a.-canonical filtration of type (1,2,1) and graded ©i_,(Q;, W;) is
giwen by a fibration over

P(Bxt' ((Q, Wa), (Qa, W2))) x P(Ext' ((Qa, Wa), (Q3, W3))).
The fiber over any point ([pe], [u3]) with pe, ps as before is given by

M ([p], [p3]) := M([p2], [p3]) /C".

Moreover, if we consider the morphism By appearing in , we get that Im ToNIm T3 =
Im Ba, so

dim(Im m3 + Im 73) = dim Im 7 + dim Im 73 — Im fo.

In addition, if we write:

c:=dim Bxt'(E", V"), (Q1,W1)), d:= dim Ext'((Eg, Vi), (Q1, W1)),
e == dim Ext'((Es, Viz), (Q1,Wh)), f:= dim Ext' ((Qs, Wa), (Q1,W1)),
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then for every ([us], [us]) we have that

M (2], [p3]) ~ Pt pdte—/-1

Proof. To any (F, V') that we want to parametrize we can associate a triple (u2, us, v) = (u, v),

where p and v have representatives of the form , respectively and pg and ps are
as in diagram (12.41)). Then by corollary [12.2.3] we get that (E, V) belongs to Gt (a¢;n, d, k),
respectively to G~ (ae;n, d, k), and it has ac-canonical filtration of type (1,2,1) if and only if
the following conditions hold:

(i) for all i = 2,3 there are no quotients ¢; : (E”, V") — (Q;, W;);

(ii) for all ¢ = 2,3 and for all morphisms ~; : (Q;, W;) — (E2, Va) we have ] o~; = 0.

Let us consider the first condition: since (Q4, Wy) % (Qi, W;) for i = 2,3 and since
(Q2, W) # (Q3,Ws)), then by lemma [3.3.1] we get that (i) is equivalent to saying that uo and
us are both different from zero. So from now on let us simply restrict to the case when this
happens.

Now let us consider condition (ii) and let us denote by v/ = (14, v3) the object az(v). For
every ¢ = 2,3, this identification is given by a diagram as follows:

o B
00— (Q1, W) —— (Ea,Va) — @}_,(Q1. W) —— 0 vV =)
N &l mn €4 ‘51
ail . . Bil f
00— (Q17W1) — (EZI,VZI) — (Q’MWZ) —0 VZ"

(12.49)

Since (Q2, Wa) # (Q3, W3), by lemma we get that (ii) is equivalent to imposing that

vy and v4 are both non-zero.
Now let us fix any ordering (i, 7) of {2,3}. By construction for every j = 2,3 we have

vi =g;(V) =gjoaz(v) = az0&;(v).

Let us consider the sequence : the morphism apo¢; is an embedding from (Q;, W)
to (E”,V"). Since (Qj,W;) is not isomorphic neither to (Q;, W;) nor to (Qu, Wy), then we
get that 7; o (ap 0 ¢5) = 0. So by exactness of that sequence we get that as o e; coincides
with the morphism §; : (Q;, W;) — (E”, V"), up to an automorphism of (Q;, W), i.e. up to
multiplication by non-zero scalars. So we can write

vi=X\-0(v) = M- 6i(v)
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for some A € C*. So v/ is different from zero if and only if 0i(v) # 0.

Now let us consider the long exact sequences induced by applying the functor Hom(—, (Q1,
W1)) to the exact sequences (12.42)) for i = 2, 3:

.-~ — Hom((E", V"), (Q1,W1)) = Hom((Q;, W;), (Q1, W1)) — Ext!((Ei, Vi), (Q1, W1))

Ty Bxt! (B, V"), (Q1, Wh)) =5 Bxt'(Qj, W5), (Q1, Wh)) — + -

Let us consider the first term of this sequence and let us suppose that it contains a non-
zero morphism (. Since the graded of (E”, V") is ®}_,(Q;, W;), then necessarily (Q, W1) ~
(Q, W) for some | = 2,3,4. By hypothesis (Q1, W7) is not isomorphic to (Q4, Wy), therefore
¢ is a non-zero morphism from (E”, V") to (Q;, W) for some [ = 2, 3. Since it is non-zero and
the target is a.-stable, then it is surjective, but this is impossible by condition (i). Therefore
the first object of the previous long exact sequence is zero. Now if (Q;, W;) % (Q1, W1), then
also the second object of such a sequence is zero, so 7; is injective; in the opposite case 7; has
a kernel of dimension 1.

Now we need to remove from the set of all the v’s in Ext!((E”, V"), (Q1,W1)) those such
that either v/ or v} are zero, i.e. all those /s that are in the image of 73 + 73. In order to
compute the dimension of such a space we need to describe the subvector space Im 72 N Im 73.
If v belongs to such a space, then this is equivalent to saying that v/ = (v4,v4) = (0,0), i.e.
@z(v) = 0. So by exactness of we have

Im 72 N Im 73 = Im Bs.

Now let us consider again the sequence ((12.37)). Also there the first term is zero, so we
have that:

o if (Q1,W1) # (Qs, W;) for i = 2,3, then By is injective;

o if (Q1,Wh) ~ (Qi, W;) # (Qj, W;) for any choice of ordering (i, j) of {2, 3}, then B has

a kernel of dimension 1.
Moreover,

o if (Q1,W7) % (Qi, W;) for i = 2,3, then both 73 and 73 are injective;

o if (Q1,W1h) ~ (Qi, W;) # (Qj, W;) for any choice of ordering (4, j) of {2,3}, then 7; has

a kernel of dimension 1 and 7); is injective.

Therefore in both cases we get that

dim Im(72 +73) =d+e—f=d+e—1—(f - 1).
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Now if we look at the sequence (12.34)), we get that the (E”,V")’s there are parametrized
by pairs

3

(], [n3)) € D PExt' (Qi, Wi), (@1, Wh))).

=2
Moreover, Aut(Qq, W7) = C* because (Q1,W1) is ac-stable and also Aut(E”, V") = C*

since (Qq,Wy) # (Qi, W;) for i = 2,3. So we conclude that having fixed ([u2],[ps]), the
(E,V)’s that we are interested in are parametrized by

M (i), [1a]) = (Ext! (B", V"), (Qu, W1)) ~ Im(7 + 7)) /C*.

Then the previous description proves that such a set is isomorphic to Pe~t~ Pdte—/=1

Lemma 12.2.5. Let us fiz any quadruple (Qi, W;)i=1,... 4 € H?Zl G; with numerical conditions

12.14), respectively , and such that:

(@2, W2) = (@3, W3)
(automatically, this implies that (Q4, Wy) % (Qi, W;) for all i = 1,2,3). Let us denote by u;

any class of an extension of the form
0 = (Q2, Wa) 285 (Eys, Vig) 25 (Qu, Wa) — 0 (12.50)

for i =23 and let us denote by p the class of the extension

0 = (Qa, Wa) @ (Q2, Wa) 22 (E", V") 225 (Qu, W) = 0 (12.51)
obtained by po and ps. Then we have that the set of all the (E,V')’s that belong to G* (ae;n, d, k),
respectively to G~ (ae;n,d, k), that have ac-canonical filtration of type (1,2,1) and graded
®_1(Qi, W;) is given by a fibration over
Grass(2, Bzt ((Qs, Wy), (Q2, Wh))).

The fiber over any point < pa, us > with po, us as before is given by

M(< pg, p3 >) := M(< pg, p3 >)/C",

where

M (< o, 3 >) = {v € Bat' (E", V"), (Q1,W1)) s.t. & o aa(v)
and &3 o o (v) are linearly independent in Ext' ((Qa, Wa), (Q1, W1))}.

(this set is well defined even if ao is not uniquely determined by < po,us >, see the proof
below).
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Proof. To any (F, V') that we want to parametrize we can associate a triple (u2, us, v) = (i, v),
where p and v have representatives of the form ((12.33)), respectively ((12.34) and po and pg are

as in diagram (12.41). Then by corollary [12.2.3] we get that (E, V') belongs to G*(ac;n,d, k),
respectively to G~ (ae;n, d, k), and it has a.-canonical filtration of type (1,2,1) if and only if

the following conditions hold:

(i) there are no quotients (o : (E”, V") — (Q2, W2);

(ii) for all morphisms v, : (Q2, Wa) — (Ea, Vo) we have 3] oy, = 0.

Let us consider the first condition: since (Q4, Wy) % (Q2, Wa2), then by lemma we get
that (i) is equivalent to saying that o and u3 are linearly independent in Ext!((Q4, W), (Q2,
W3)).

Now let us consider condition (ii) and let us denote by v/ = (14, /4) the object az(v). For
every ¢ = 2,3, this identification is given by a diagram as with (Q2, Wa) = (Q3, W3).
Then by lemma we get that (ii) is equivalent to imposing that 4 and v} are linearly
independent in Ext!((Qq, W), (Q1,W1)). By construction for every j = 2,3 we have

v; = (V) =g om(v).

Now let us consider the sequence ((12.34). The set of the (E”,V")’s there is in bijection
with the set of points

< pg, 3 >€ Grass(2, Ext! ((Qq, Wa), (Qa, W2))).

Since (Q2, Wa) % (Q4, Wy), then Aut(E”, V") = C*; moreover we have also Aut(Qq, W1) =
C* because (Q1,W7) is ac-stable. Therefore, having fixed a point < uo, us >, we have that
there’s a natural action of C* on the set

M (< g, g >) == {v € Ext'(E", V"), (Q1,W)) s.t.
g3 o az(v) and #3 o a3(v) are linearly independent }

and the corresponding (E,V')’s are parametrized by

M(< p2, pg >) = M(< p2, puz >)/C".

The only thing we have still to prove is that the set M (< pg, us3 >) is well defined. Indeed
a priori the condition

“Eg o ag(v) and g3 o ag(v) linearly independent”

depends on the choice of asg, i.e. on the representative (12.51)) for the point < uo, ug >. So
let us suppose that we have chosen another representative < pf, us > for < pg, us > and let
us denote by p’ the class of the extension
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0= (Qa. W) @ (Qa, Wa) 2 (B, V") 225 (Qu, W) — 0 (12.52)

associated to the pair (uj,p4). Note that the central term is the same of (12.51) (up to
isomorphism) since it depends only on < pg, 3 > and not on its representative. Now since
(12.51)) is exact and since (Q2, Wa) % (Qa, Wy), then we get that the morphism o induces an

injective morphism

A (Qa, Wa)®2 — (Qa, Wa)®2

such that of, = ag 0 A. Since A is injective, then it is also surjective, so it is of the form

A= (CCL Z) S Aut((Qg, W2)®2) = GL(Q,(C).

Now let us fix any

IS Eth((E”, V”), (Q1, Wl))
and let us suppose that there exists (A2, A3) € C? ~ {0} such that

ME3 0 (1) + \g5 0 a(v) = 0.

By construction of A, this implies that

0=Xy-E30Aoaz(v)+A3-F30Aoaz(v) =Xy - Aoeyoan(v)+ N3- Aoegoaz(v) =

= Ag-agg + begoaa(V)+ A3 -ceq + degoaa(v) = (ada+cA3) -Ezoaa (V) + (bAa+dA3) -E30aa(v).

alg + cA3 _[a ¢ A2
bho+drs]  \b d) \ )"

Since the matrix A is invertible, so is its transposed; moreover (A, A3) € C? ~ {0}. There-
fore, (aXa + cA3,bAa + d)3) € C2 . {0}. So we conclude that the set M (< u2, uz >) does not
depend on as but only on < pg, ug >.

Now

O

Now we want to give a global parametrization of the objects described before, i.e. we
want to describe families of schemes that parametrize various types of (E,V)’s when the
graded @7, (Q;, W;) varies over H?:l G;. Let us denote by @}, (Q;, W;) a fixed graded with
conditions (12.44), respectively (12.45)), and such that (n1,k1) = (n2, k2) = (n3, ks). If we

assume that (ny, k1) = (no, k2) = (ns, k3), then (12.44)), respectively (12.45)), are equivalent to
imposing that

ki ok
U (12.53)
ni n
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respectively that

k k
n_r (12.54)
ni n

If (Q2, Wa) # (Q3, W3), then by lemma|12.2.4) the corresponding (F,V')’s are parametrized
by triples ([ua], [13], [v]) with [w] € P(Ext'((Qs, Wa), (Qi, Wi))) for i = 2,3, representative

for ju = (2, p3) and
[v] € M([u2], [us]) € P(Ext'((E", V"), (Q1, W1))).

We are considering the case when the (Q;, W;)’s are all of the same type for i = 1,2, 3.
Therefore we need to take into account the possible isomorphisms between them. So we need
to consider separately the following cases.

(1) If (Q1,W1) =~ (Q2,Ws) # (Q3,W3), then the roles of (Q2, W) and of (Q3, W3) are not
interchangeable, so we need to consider ordered pairs ([pa], [13])-

(2) If (Qi, W;) % (Qj, W) for all i # j € {1,2,3}, then the roles of (Q2, W2) and of (Q3, W3)
are interchangeable. Therefore, we need to consider unordered pairs ([pz], [ps]), so we will
have to take into account an action of Zo on schemes constructed as in (1).

Note that since the order of (Q2, W2) and (Q3,W3) is not important, we don’t need to
consider also the case (Q1, W1) ~ (Q3, W3) 2 (Q2, Wa2).

If (Q2, Wa) ~ (Q3, W3), then by lemmall2.2.5/the corresponding (E, V')’s are parametrized
by pairs (< pe, uz >, [v]) with

< po, 3 >€ Grass(2, Ext! (Qq, Wy), (Qa, Wa)))

and

V] € M(< pg, p3 >) C P(Ext'((E", V"), (Q1, W1))).
We need to consider separately the following cases:
(3) (Q1, W1) # (Q2, W2) =~ (Q3, W3);

(4) (Q1,W1) =~ (Q2, Wa) ~ (@3, Ws).

Remark 12.2.1. The only case that we are able to describe completely is case (1). In the other
3 cases it is not currently possible to get a global description and/or such a description is not
good enough in order to compute Hodge-Deligne polynomials. Therefore, we only give the
details for the first case, namely proposition [7.6.1]
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Proof of proposition [7.6.1 The first part of this construction is analogous to the construction
performed in the proof of proposition We state anyway all the details since we cannot
use exactly the same notations used there.

First of all, we consider a set of data 22 given by:

e =2 ie. we are considering a tree with only 2 leaves and an internal node;

e the invariants (ng, k2) and (ng, k4) associated to the first leaf, respectively to the second
leaf;

e any non-negative integer a such that there exists ((Q2, W2), (Q4, Wy)) € G2 X G4 with

dim Ext'((Q1, Wa), (Q2, Wa)) = a.

If we use condition ((12.53)), respectively (12.54)), together with the fact that (ni, k1) =
(no, ko) = (ns,ks) then we get that 1% # %. So by lemma for every pair of points
(QQ, WQ) S GQ and (Q4, W4) S G4 we have

Hom((Q4, W), (Q2, W2)) = 0.
Then by proposition for r = 2 we get the following objects:

e a finite set of indices L2;

e a covering of

U7 = {t € Gy x Gy st. dim Ext'((2, 42)(Qa, Wa)r, (92 , 2)(Q2, Wa)i) = a}
by locally closed subschemes U 31 with ¢ € L2; we denote by ﬁg;m qf;i and ﬁgl the various
projections composed with the corresponding locally closed embeddings; so for example

ﬁg;i : Ug;i — G2 X G4 — Gg;

e for every i € L2, alocally free sheaf on U 3;1»:
. ;o PO VS A A\ V
Hg;i = gxt}i'ﬁg _ ((qg;i7 Q3;i)*(g47 W4)7 (pg;zﬁpg;i)*(g% W2)) )

where (Ql, Wl) is the local universal family parametrized by G(ac; ny, dp, kp);

e projective fibrations for every i € L2:

~2 H2 » Fr2
Paszi - Ra;i = P<Hg,z) — Ua;i

with fibers isomorphic to P21
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universal extensions for every i € L2, parametrized by R2~i

0 = (§2, 32 (025 D2) (2, Wa) ® 2 O (1) =
- (32;1'71)3;1‘) — (953}, ‘ﬁg;i)*(dg;w@2;i)*(Q47W4) — 0. (12.55)

a

Analogously, let us fix a set of data 95’ as follows:

r = 2, i.e. we are again considering a tree with only 2 leaves and an internal node;

the invariants (ns, k3) and (n4, k4) associated to the first leaf, respectively to the second
leaf;

any non-negative integer b such that there exists ((Qs, W3), (Q4, Wy)) € G3 x G4 with

dim Ext!((Q4, W), (Q3, W3)) = b.

Then by proposition we get the following objects:

a finite set of indices Lg’;

a covering of

U = {t € G x Gy s.t. dim Ext' (¢, G2) (O, Wi)s, (B}, 53) (D3, Ws),) = b}

by integral locally closed subschemes Ug’ y with j € LZ’; we denote by ﬁg’, I dg’, j and frg’, j
the various projections composed with the corresponding locally closed embeddings;

for every j € Lg, a locally free sheaf on ﬁg’ T

7:[3'.: gxtl (AS’. ASI)*<QA W) (AB’. ~3 )*(Q W) \/.
b;] . WUE, Qb;jaqb;J 4, 4), pb;japb;] 39 3 9
3J

projective fibrations for every j € L3:

23 . H3 . m3 3
with fibers isomorphic to P*~1;

. . . 3 . H3 .
universal extensions for every j € Ly, parametrized by Ry

0— (952:]-,@2;j)*(ﬁg’:j7ﬁ§;j)*(Q3aWs) ®R§;j ORSb;j(l) -
= (E3,,V8,) = (835, 85,07 (G5, 5.)* (Qa, Wa) — 0. (12.56)
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Now we fix any (a,b;i,7) and we consider the following cartesian diagram constructed in

several steps, starting from (a):

A ég;j A9 ‘§137;j )
Qa,b;i;j a,b;i,j Ra;i
02 O(d) V2 C() P
. e 3 .
3 J > 3] 2
Qi Uabiij Uz
Si (3 D(C) TA!21,1 D(a) qz i
Ri] 23 Uli] 53 64'
¥b;j p.j
| (12.57)

Then we define the locally closed subscheme of Ua,b;z‘,ji

V%bﬂ',j ={te Ua’b;m‘ s.t.
Hom((fg;jv f‘g;j)*(ﬁz;i?ﬁg;i)*(é% WQ)ta (f‘g;ia fg,z)*(ﬁg,j7ﬁ2,j)*(é3v W?))t) = 0}

and we set:

Rapij = Qabiijlo, ,, -

Now we denote by (Q4, W4) the pullback of (Q4, W4) from Gy to Ra,b;i,j; moreover we set

(@2, W2) = (05,63, (5% 55)" (B2 PR0) (5o 2)* (Q2 W) B2 O (1))

and analogously for (Qs,W3). By pullback from RZZ and from Ri’ y (see lemma , the
sequences ({12.55)) and (12.56]) give rise to 2 short exact sequences of coherent systems para-
metrized by Ra,b;i,j:

0 (Q2,W2) 2 (15, Vi) 22 (@1, W) >0, (12.58)
0 (2. TW) 2 (E15,V3) 2% (@03W) =0, (1259

Then we sum these 2 extensions in order to get an extension of the form

0 — (2, W) @ (03, W) 22 (&1, VU ii) 22 (Qa, W) = 0. (12.60)

In particular, we get a diagram of the form
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. o . . B
0 ’ @?:2(917 W) - (5;/,5;2',]'7 Vg,b;i,j) - (Q4, Wy) — 0

N — Q42 —492 642

04’(927]/\}2) (ga'mv )

0, W) —— 0
(Q4, Wy) ' (12.61)

where pry is the quotient (Qg, Wa) @ (Q2, W3) — (92, Ws). So we have a surjective morphism

n2 - ( (Zb;i,j? (/z/,b;i,j) (ga Z,V )

Analogously, we get a surjective morphism

4 - =43 —43
3 ( c/L/,b;i,ja z/z/,b;i,j) - (gb;javb;j)'

Now let us consider the locally closed subscheme of Ra,b;m:

Uabcde,z,j = {t € Rabz] s.t. dim Ext! (( abiiyjo abz,j)tv(Q27W2) )
dim Eth((ga zvva z)tv (Q2,W2) ) = d, dim Eth((Eb;pvb;j)ta (@%W?)t) = e}'

By applying several times lemma [4.6.1| we have that there is a finite locally closed disjoint
covering {ﬁa,b’c,d,e;i,j,k}k of such a scheme such that all the following sheaves are all locally
free and commute with base change

~

1 511
Hapedesijh = Exly, <(€“’bﬂ"j Vewig) (@ W2)>
a,b,c,d,e;i,j,k

2 1 42 =
Ha,b,c,d,e;i,j,k = glﬂtﬂ—f]abcde-ijk ((ga Z,V ) (QQ,WQ)),

~

3 e 43 43\ = o5
Ha,b,c,d,e;i,j,k = gxtﬂ'U bedeiih ((gbga ng) (QQ’ WQ)) .
a,b,c,d,e;i,j,

Let us fix any point ¢ of Ua,b,c,d,e;i,j and let us denote by

0 — (Qa2, Wa) ® (Q3,W3) = (E", V") = (Q4,Ws) = 0

the restriction of (12.60]) to t. Such a sequence is a representative for a pair (pa4, 3 +) with
both pos and ps; different from zero; moreover by construction (Q4, Wa) # (Q2, W2) and

(Q2, W) # (Q3,Ws). So by lemma [3.3.1] we get that
Hom((E",V"),(Qi,W;)) =0 Vi=1,2.

So by base change the sheaf

Homr, ((ég,b;i,jv Vi biig)s (Q2,W2))

a,b,c,d,e;i,5,k
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is zero. So by corollary we get that for every index k there is a projective bundle

o ~ N v ~ ~
wa,b,c,d,e;i,j,k : Pa,b,c,d,e;i,j,k = P((Ha,b,c,d,e;i,j,k) ) — Ua,b,c,d,e;i,j C Ra,b;i,j

with fibers isomorphic to P°~!. Moreover, there exists a universal family of classes of non-split
extensions parametrized by Py p ¢ d e jk:

0 — ((ﬁ;’b’qd’e;i’j’k7 @a,b,c,d,e;i,j,k)*(@%W2) ®pa,b,c,d,e;i,j,k Opa,b,c,d,e;i,j,k(l) —

- (8a7b7c>d>e;i7j>k7 Vaabacad’e;i’jak) -

A~

— (@;,b,c,d,e;i,j,m @a,b,c,d,e;i,j,k)*( Ab;i}jy Vzlzl,b;i,j) — 0. (1262)

Now let us consider the morphism induced by 7s:

0 1 =42 =42, =
2 - Ha,b,c,d,e;i,j,k: = 5$t7r0a b ciiiih ((ga;i7 Va;i)7 (QQ’ WZ)) -
— 5“# ((gz/z/,b;z’,j? vg,b;i,j)a (§27W2)) = ﬁa,b,c,d,e;i,jh

Ua,b,c,d,e;i,4,k

analogously, we can consider a morphism of the form

—_, A3 "
73 Hypedeijk — Mabedesijk-

Then let us consider the morphism:

S 73 y o
M2+ 73 Hapedeijk ® Mapedeijk — Habedesijk:

By construction all the sheaves in the previous line are locally free and commute with base
change. Moreover, by the proof of lemma [12.2.4] and base change we get that the rank of such
a morphism is constant. To be more precise, in the notation of lemma that rank is
equal to d + e — f; in the case under consideration we are imposing (Q1, W1) ~ (Q2, W3), so
f = a and the rank of that morphism is therefore d + e — a. Therefore the image of 7y + 75 is
a locally free subsheaf of ﬁa,b,c,d,e;i,j,k; we denote such subsheaf by H

abedesijk So it makes
sense to consider the projective subbundle

Qa,b,c,d,e;i,j,k = P((ﬁ;7b707d76;i7j7k)v) C P((ﬂa,b,c,d,e;i,j,k)v) = Pa,b,c,d,e;i,j,k
and to define the scheme

Rapedesik = Pabedesigh ™ Qabedesik-

Then the proof of lemma [12.2.4{ shows that for every point r of Ra,b,c,d,e;i,j,k’ the restriction
of (éa,b,c,d,e;i,j,kaf}a,b,c,d,e;i,j,k) to r gives rise to an object of G (ae;n,d, k), respectively of
G~ (a¢;n,d, k). Then we conclude as usual. O
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12.2.2 Second case

In this subsection we consider the case when (F,V) has a.-canonical filtration of type
(1,2,1) and (Q1,W1) % (Qq, W;) for i = 2,3,4. We can associate to every (E, V) that we want
to parametrize a pair of exact sequences of the form:

0— (Ql, Wl) 7 (EQ, VQ) AN (QQ, WQ) D (Q3, Wg) — 0; (12.63)
0= (By, Vo) = (B, V) -2 (Qu, Wy) — 0. (12.64)

We denote by p and v the classes of those 2 exact sequences. If (E, V') has «a.-canonical
filtration of type (1,2,1), then it has certainly the following proper a.-semistable subobjects
with ac-slope u:

(a) (Q1,W1), that is the only a.-stable one;
(b) an extension of (Q;, W;) by (Q1, Wy) for i = 2,3;
(c) an extension of (Q2, W2) @ (Q3, W3) by (Q1, W1).

So we get that conditions ([12.35)) are necessary in order to have that (E, V) belongs to
Gt (ae;n,d, k). Analogously, we get that conditions ((12.36) are necessary in order to have
that (E,V) belongs to G~ (ac;n,d, k)

Let us consider the following long exact sequence obtained by applying the functor Hom((Qy4,
Wy), —) to (12.63)):
-+ = Hom((Q4, Wa), (E2, V2)) — Hom((Q4, W), (Q2, W2) & (@3, W3)) —
— Ext! ((Qa, Wa), (@1, W1)) T Ext' (Qu, Wa), (Ez, Vo))
5 Ext! ((Qa, Wa), (Q2, Wa) @ (Q3, Wa)) = -+ (12.65)

If we apply R to v we get a diagram of this form:

5 d

(E2,V2)

(E,V)

(Q4aW4) —0 v

2
=

K N B1

a B
0 —— &3 ,(Qi, Wi) — (E", V") —2— (Qq, Wy) ——— 0

3|

@) qa2.66)
By the snake lemma and (12.63), we get an induced short exact sequence

0= (Q1, W) 25 (B,V) 25 (5" V") = 0. (12.67)

Again by the snake lemma, eventually by replacing oy with a1 o ¢ for a suitable automor-
phism ¢ of (Q1,W1) (i.e. ¢ = X-id(q, w,) for some A € C*), we have that
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ap =coo. (12.68)

We can identify p with a pair

(2, p3) @EXt (Qz, i), (Q17W1)>

For every ¢ = 2, 3, this identification gives a diagram of the form:

00— (Q1,W1) —2— (Fa, Vo) —— @} ,(Q1, W) —— 0 K
IaY o; % €i g
00— (Q1,W1) —25 (B, Vit) — (Qs, Wi) ——— 0 i

(12.69)

where ¢; is the embedding of (Q;, W;) in (Q2, Wa2) & (Q3, W3) for i = 2,3. By the snake lemma,
for every i = 2,3 we get an induced short exact sequence
0— (Eﬂ, Vi ) (EQ, VQ) (Qj, ) — 0 (12.70)

where j is the index in {2, 3} different from ¢. Having fixed all those notations, we have the
following results.

Lemma 12.2.6. Let us fix any pair of exact sequences as (12.65) and (12.64), let us denote
by 1 and v their classes. Then the following facts are equivalent.

(a) (E,V) has ac-canonical filtration of type (1,2,1);

(b) foralli=2,3 and for all morphisms ~; : (Qi, W;) — (Ea, Va) we have kovy; = 0; moreover,
Rr(r) # 0.

The proof is analogous to the proof of lemma [12.2.1] so we omit it.

Lemma 12.2.7. Let us fix any pair of evact sequences as (m and (m) and lel us
suppose that:

ki k .

—>—- Y 2,3,4 12.71

"0 vie {234} (12.71)
respectively that

ki k .

—< -V 2,3,4}. 12.72

Mot vie{23.4) (12.72)

Let us also suppose that (E,V') has ac-canonical filtration of type (1,2,1). Then (E,V)
belongs to Gt (ae;n, d, k), respectively to G~ (ae;n, d, k).
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Proof. Since (E, V) has a.-canonical filtration of type (1,2,1), all its proper subobjects that
are ac-semistable with ac-slope as (E,V) contain (Q1,W1). Now let us assume conditions
(12.72)), the other case is analogous. Those conditions imply that

k ko ki+k
o 1+

< — Vie{23,4}, M<E Vi#j€{2,3,4}

n n ni+n on ni +n; +n;

So all possible subobjects of (F, V') that are a.-semistable with a.-slope as (E, V') do not
destabilize (E, V) for a_, so we conclude. O

Corollary 12.2.8. Let fix any quadruple (Qi, W;)i=1,.4 € H?‘Zl G; and let us suppose that

conditions (12.71), respectively , are satisfied (automatically, we have that (Q1,W1) #
(Qi, W;) for all i = 2,3,4). Then the (E,V)’s that belong to GT(ac;n,d, k), respectively to
G~ (ae;n,d, k), that have a.-canonical filtration of type (1,2,1) and graded &}, (Q:, W;) are

those induced by pairs p, v with representatives and , such that:

e for all i = 2,3 and for all morphisms 7; : (Q;, W;) — (E2,Va) we have ko y; = 0;

e %(v) #0.

Now we will have to state 2 lemmas according to the relation between (Q2,Ws) and
(@3, W3).

Lemma 12.2.9. Let us fiz any quadruple (Qi, W;)i=1,... 4 € H?:l G; with numerical conditions

12.71)), respectively , and such that (Q2,Wa) # (Qs3,W3) (automatically, we have
(Q1,W1) 2 (Qi, W;) for all i = 2,3,4). Let us denote by p; any class of an extension of the

form

0= (Q1, Wh) =% (Ei, Vir) =% (Qi, Wy) — 0 (12.73)
for i =2,3 and let us denote by p the class of the extension

0= (Q1, W1) == (B2, Va) = (Q2, W2) @ (Qs, W3) — 0 (12.74)

obtained by po and us (so that we have diagrams of the form fori=2,3). Then the
set of all the (E,V)’s that belong to G (ae;n, d, k), respectively to G~ (ae;n,d, k), that have
a-canonical filtration of type (1,2,1) and graded &}_,(Q;, W;) is given by a fibration over

P(Ezt ((Q2, W2), (Q1, W1))) x P(Eat' ((Q3, W), (Q1, W1)))-
The fiber over any point ([us2], [us]) with uo, pus as before is given by

M (2], [us]) = (Bat ((Qs, Wa), (Ez,V2)) ~ I &) /T,
where 0 15 as in . In addition, if we write:

c:= dim Bxt'(Qu, W4), (E2,V3)), d:= dim Ext'((Qq, Wy), (Q1,W1)),
then for every pair ([pe], [us]) we have that
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e if (Qu,Wy) % (Qi, W) for all i = 2,3, then M ([uz), [u3]) ~ P! < pd-1;

e if (Q4, Wy) is isomorphic to (Q2, Wa) and not to (Q3, W3) or conversely, then M ([us], [13])
~ Pl (P42,

Proof. To any pair (E, V') that we want to parametrize we can associate a triple (uz, u3, v) =

(1, v), where p and v have representatives of the form ([12.63]), respectively (12.64]), and
2, g are as in diagram ((12.69)). Then by corollary [12.2.8] we have that (E, V') belongs to

Gt (ae;m, d, k), respectively to G~ (ae; n, d, k), and it has a.-canonical filtration of type (1,2, 1)
if and only if the following conditions hold:

(i) for all ¢ = 2,3 and for all morphisms v; : (Qi, W;) — (E2, V2) we have K o~; = 0;
(ii) ®(v) #0.

Since (Q2, Wa) # (Q3,W3), then lemma [3.3.2] proves that (i) is equivalent to imposing
that both po and ps3 are non-zero.

By exactness of , condition (ii) is equivalent to saying that v does not belong to
the image of @, so the objects we are interested in are only those induced by triples (u2, i3, v)
such that p; # 0 for i = 2,3 and v ¢ Im 7. Now if we look at the sequence , we get
that the set of all the (Fs, V3)’s there is given by

P(Ext'((Q2, W2), (Q1, W1))) x P(Ext' ((Qs, Ws), (Q1, W1))).

We have that Aut(Es, V2) = C* because (Q1, W1) % (Qi, W;) for i = 2,3; moreover also
Aut(Qq, Wy) = C* because (Q4, Wy) is ac-stable. In addition,

Hom((Q4, W4), (EQ, VQ)) =0.

Indeed, since the graded of (Ea, Va) is @3_;(Q;, W;), then if there exists a non-zero mor-
phism v in that space, then (Q4, W4) ~ (Q;, W;) for some i = 1,2,3. Now by hypothesis
(Q4, Wy) 2 (Q1,W7), so we must have that v is of the form 4; for some i = 2,3. But condi-
tion (i) implies that this is impossible; so the previous space is the zero space.

Then we get that having fixed ([u2], [113]), the (E, V)’s we are interested in are parametrized
by M ([p2], [u3]). Now let us consider the long exact sequence : as we just said, the
first term in that exact sequence is zero. The second term is zero or C according to the
relations between (Q4, Wy) and (Q;, W;) for i = 2,3. Therefore, we get that 7 is injective if
(Qa, Wy) # (Q;, W;) for i = 2,3, while it has a kernel of dimension 1 if (Q4, W4) is isomorphic
to (Q2, Wa) and not to (Qs, W3) or conversely, so we conclude. O

Lemma 12.2.10. Let us fiz any quadruple (Qi, W;)i=1... 4 € H?Zl G with numerical condi-
tions (12.71)), respectively (12.79), and such that (Q2, W2) ~= (Q3, W3) (automatically, we have
that (Q1,Wh) # (Qi, W;) for all i = 2,3,4). Let us denote by u; any class of an extension of
the form



12.2 Canonical filtration of type (1,2,1) 249

0= (Q, W1) 5 (Ein, Vi) =5 (Qg, Wa) = 0 (12.75)

for i =2,3 and let us denote by p the class of the extension

0— (Qth) L> (E27‘/2) L> (Q27W2)€B2 — 0
obtained by po and us (so that we have diagrams of the form fori=2,3). Then the
set of all the (E,V)’s that belong to G (ae;n, d, k), respectively to G~ (ae;n,d, k), that have
ae-canonical filtration of type (1,2,1) and graded ®}_,(Q;, W;) is given by a fibration over
Grass(2, Bzt ((Q2, Wa), (Q1, W1))).

The fiber over any point < g, us > with po and ps as before is given by

M(< p2, pz >) = (But' ((Qa, Wa), (B2, Vo)) N Im 7) /C*,
where T is as in . In addition, if we write:

b:= dim Brt'(Qu, Wy), (E2,V2)), ¢ := dim Ext'((Qu, Wy), (Q1,W1)),

then for every point < ug, us > we have that
o Zf (Q4, W4) 7% (QQ, Wg) then M(< M2, 3 >) ~ Pb—1 Pcfl;
e if (Qq, Wy) is isomorphic to (Qo, Wa), then M(< o, p3 >) ~ PP—1 < Pe3.

Proof. To any pair (E, V) that we want to parametrize we can associate a triple (pz, us, v) =

(1, v), where p and v have representatives of the form ([12.63]), respectively (12.64]), and
2, g are as in diagram ((12.69)). Then by corollary [12.2.8] we have that (E, V') belongs to

Gt (ae;m, d, k), respectively to G~ (ae; n, d, k), and it has a.-canonical filtration of type (1,2, 1)
if and only if the following conditions hold:

(i) for all ¢ = 2,3 and for all morphisms s : (Q2, Wa) — (Ea2, Va) we have ko vy = 0;
(i) ®(v) #0.

Since (Q2, W) ~ (Q3,W3), then lemma proves that (i) is equivalent to imposing
that ps and pg are linearly independent in

Ext!((Q2, Wa), (Q1, W1)).

By exactness of , condition (ii) is equivalent to saying that v does not belong to
the image of @, so the objects we are interested in are only those induced by triples (u2, i3, v)
such that ps and pg are linearly independent and v ¢ Im @. Now if we look at the sequence
(12.64), we get that the set of all the (E2, V2)’s there is given by

Grass(2, Ext*((Qz, Wa), (Q1, W1))).
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We have that Aut(E2, V2) = C* because (Q1, W1) % (Q2, Wa); moreover also Aut(Q4, Wy)
= C* because (Q4,Wy) is ac-stable. In addition, as in the previous lemma we have:

HOHI((C);;7 W4), (EQ, VQ)) =0.

Then we get that having fixed a point < g, u3 > in the grassmannian, the (E,V)’s we are
interested in are parametrized by M (< p2, 3 >). Now let us consider the long exact sequence
(12.65): as we just said, the first term in that exact sequence is zero. The second term is zero
or C? according to the relations between (Q4, Wy) and (Q2, Wa). Therefore, we get that & is
injective if (Q4, Wy) # (Q2, W2), while it has a kernel of dimension 2 if (Q4, W4) is isomorphic
to (Q2, W2); so we conclude. O

Now we want to give a global parametrization of the objects described before, i.e. we
want to describe families of schemes that parametrize various types of (E,V)’s when the
graded varies over H?Zl G; and the a.-canonical filtration is of type (1,2,1). Let us denote by
@?:1(Qi, W;) a fixed graded with conditions , respectively Qb If we assume that

(no, k) = (ns, k3) = (n4, kq), then (12.71)), respectively (12.72)), are equivalent to imposing
that

ky _ K

> - 12.76
252 (12.76)
respectively that
k k
2 (12.77)
no n

If (Q2, Wa) # (Q3, W3), then by lemma|12.2.9|the corresponding (F,V')’s are parametrized
by triples ([ua], [13], [V]) with [u;] € P(Ext!((Q:, W;), (Q1, W1))) and representative (12.74)) for
= (p2, p3) and

[v] € M([pz, [u3]) C P(Ext'((Qa, Wa), (B2, V2))).

We are considering the case when the (Q;, W;)’s are all of the same type for i = 2,3,4.
Therefore we need to take into account the possible isomorphisms between them. So we need
to consider separately the following cases.

(1) If (Q2, W3) % (Q3,W3) ~ (Q4,Wy), then the roles of (Q2,W2) and of (Q3, W3) are not
interchangeable, so we need to consider ordered pairs ([ua], [u3])-

(2) If (Qi, W;) % (Q4, W) for all i # j € {2,3,4}, then the roles of (Q2, W2) and of (Q3, W3)
are interchangeable, so we need to consider unordered pairs ([u2], [us]), so we will have to
take into account an action of Zg on schemes constructed as in (1).

Note that since the order of (Q2, W2) and (Q3,W3) is not important, we don’t need to
consider also the case (Q2, Wa) ~ (Q4, Wy) # (Q3, W3).
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If (Q2,Ws) =~ (Q3,W3), then by lemma |12.2.10| the corresponding (E,V')’s are parametri-
zed by pairs (< pa, us3 >, [v]) with

< U2, U3 >€ G’I“CLSS(2, Eth((QQ, WQ), (Ql, Wl))),
representative (12.2.10) for p = (ua, u3) and

V] € M(< p2, 3 >) C P(Ext! ((Qa, Wa), (E2, V2))).

We need to consider separately the following cases:

(3) (Q2, W2) =~ (Q3, W3) 2 (Qa, Wa);
(4) (Q2,W3) ~ (Q3,W3) ~ (Q4, Wy).

Remark 12.2.2. In case (2) it is not currently possible to give a global description; the cases
that we are able to describe completely are the remaining 3 ones, accounted for by propositions

7.6.2] [7.6.3] and [7.6.4] respectively.

The proof of proposition is on the same line of the proof of proposition [7.6.1], with
the only significant difference that we use lemma instead of lemma We remark
that we don’t need the invariant d defined in lemma [[2.2.9; indeed we are assuming that
(Q3,W3) >~ (Qq, Wy), therefore

d = dim Extl((Q4, Wy), (Q1,W1)) = dim EXt1((Q37 W3), (Q1, W1)) = b.

The proof of proposition is a direct consequence of lemma [12.2.10] so we omit the
details.

The proof of proposition is also a direct consequence of lemma [12.2.10] We only
remark that we don’t need the invariant ¢ of that lemma: indeed we are imposing that
(Q2, W3) ~ (Qq, Wy), therefore

¢ = dim Ext'((Q4, W4), (Q1, W1)) = dim Ext'((Qa, W), (Q1, W1)) = a.

12.3 Canonical filtration of type (1,1,2)

In this case the a.-canonical filtration is given by:

0C (E1,V1) C (Ea, Vo) C (E3,V3) = (E,V),

where (E1, V1) =: (Q1, W), (B2, Va)/(E1, V1) := (Q2, W) and (E,V)/(E2, V2) ~ (Q3, W3) &
(Q4, Wy). All the (Q;,W;)’s for i = 1,--- ,4 are a.-stable coherent systems with the same
ac-slope 1. Then we can associate to every (F, V') that we want to parametrize a pair of exact
sequences of the form:

0= (Q1,W1) == (B2, Va) = (Q2, W2) = 0; (12.78)
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0= (By, Vo) == (B, V) -2 (Qs, W) @ (Qa, W4) — 0. (12.79)

We denote by p and v the classes of those 2 exact sequences. If (E, V') has a.-canonical
filtration of type (1,1,2), then it has certainly the following proper a.-semistable subobjects
with ac.-slope u:

e (Q1,W1), that is the only a.-stable one;
o (Ey, V), that is an extension of (Q2, W2) by (Q1, W1);
e for all i = 3,4, an extension of (Q;, W;) by (Es, V).

Actually, this is a complete list (see lemma ; for the moment we don’t prove that,
80 let us consider this as a partial list. Given that, having fixed any pair of sequences of the
form and (12.79), the following numerical conditions are necessary in order to have
that (FE, V) belongs to GT (ag;n, d, k)

k ko ki+k ko kit+ke+k Kk
o 1+ 2 _F 1+ k2 +

-, ) < — Vie{3,4}, (12.80)
n1 n niy + no n ni + no + n; n
where the last condition is equivalent to:
ki k
— > — Vie{3,4}. 12.81
w o Tieldy (12.81)

Analogously, the following conditions are necessary in order to have that (E, V) belongs
to G~ (ae;n,d, k):

ni n’ ny+ng n’ ni+ng+n
where the last condition is equivalent to:

LEEN 1th F %>E Vi€ {3,4}, (12.82)

ki k ,

— < — 4}. 12.
ni<n Vi e {3,4} (12.83)
Let us consider the long exact sequence obtained by applying the functor Hom((Qs, W3) ®

(Q4, Wa), ) to (12.78):

-+ — Hom((Q3, W3) ® (Qu, W), (Q2, Wa)) — Ext'((Q3, W3) @ (Qu, Wa), (Q1, W1) %>

T Bxt!((Qs, Wa) @ (Qa, Wa), (Ba, Va) — Ext'((Q3, W3) & (Q1, Wi), (Qa2, W2)) — -+
(12.84)
If we apply % to v, we get a diagram of this form:

0 (o, Vo) —— (B, V) —— &L ,(Qi, W;) —— 0 v
K m 51 N K
a B
0 ——— (Q, Wa) —"— (B". V") = &iL4(Qi, W) —— 0 R(w).

(12.85)
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By the snake lemma and (12.78)) we get an induced exact sequence:
0= (Q1,W1) 25 (B,V) 25 (B, V") > 0. (12.86)
We can identify v with a pair
4
(v3,v4) € @D Ext! (Qi, Wi), (B2, V2)) .
i=3
For every ¢ = 3,4, this identification gives a diagram as follows:
é
0 (B2, Vo) ——— (B, V) —— @}_4(Qi, W;) —— 0 v
mn &; % €i g
0 (B2, Vo) —25% (Eior, Vior) — (Qis Wi) ——— 0 Vi, (12.87)

where ¢; is the embedding (Q;, W;) — (Q3, W3) & (Q4, Wy) for i = 3,4. Having fixed all those
notations, let us state and prove the following results.

Lemma 12.3.1. Let us fix any pair of exact sequences as (12.78) and (12.79), let us denote
by w and v = (v3,v4) their classes and let us suppose that (Q1, W1) # (Qi, Wi) Vi € {2,3,4}.

Then the following facts are equivalent:

(a) (E,V) has a.-canonical filtration of type (1,1,2);

(b) for all i = 3,4 and for all morphisms ~; : (Qi, W;) — (E", V") we have Bg 0 ~; = 0;
moreover | 7 0.

Proof. To any (E,V') that we want to parametrize we can associate a triple (i, v3,v4) = (1, v)

with p and v represented by (12.78)) and ((12.79) respectively. By looking at those 2 sequences,
we get that (£, V) has a filtration of the form

0= (Eo, Vo) C (E1,V1) :== (Q1,W1) C (Ea, V2) C (E3,V3) = (E,V). (12.88)

Here (El, ‘/]_)/(EO, ‘/0) == (Ql, Wl) and (EQ, VQ)/(El, ‘/1) = (QQ, WQ) by . MOTGOVQI‘,
by we have that (Es,V3)/(E2, Va) ~ (Q3,W3) & (Q4, Wy). Since all the (Q;, W;)’s
are ac-stable with the same ac.-slope p, then we can apply proposition the filtration
is the a.-canonical filtration of (E,V) (and so (E,V) has ac-canonical filtration of
type (1,1, 2)), if and only if condition (c) of that proposition is satisfied. In our case the index
t is equal to 3, so we need to consider 2 sequences as in that proposition. It is easy to see that
those 2 sequences are exactly the second line of diagram and . So (E,V) has
ac-canonical filtration of type (1,1,2) if and only if the following 2 conditions hold:
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(i) for all i« = 2,3,4 and for all non-zero morphisms ~; : (Q;,W;) — (E”, V") we have

B2 0v; = 0;
(ii) for all 4 = 1,---,4 and for all non-zero morphisms 7; : (Q;, W;) — (E,V) we have
51 o ?z =0.

Let us first consider condition (ii). Since (Q1, W1) % (Qi, W;) for i = 2,3, 4, then there
are no morphisms 41 with 81 o7, # 0, so we can ignore that possibility in (ii). Now let us
suppose that there is a non-zero morphism 7; for some ¢ = 2,3,4. Then we have to consider
2 cases. If 0 04; = 0; then this induces a non-zero morphism 7/ : (Q;, W;) — (E2, V) such
that e o4/ = 5;. Since (Q1, W1) # (Qi, W;) for i = 2,3,4, then this implies that (Q;, W;) is
isomorphic to (Q2, W2) and that 7/ gives a splitting of , sopu=0. 10075 # 0, then
we write ~y; := 1 0 7;; by diagram , we get that

Paoryi=profroy =0d075; #0.

So if condition (ii) is not satisfied, then either ;1 = 0 or condition (i) is not satisfied.

Now let us consider condition (i): if there is any morphism 73 : (Q2, Wa) — (E”, V") such
that 82 o 9 # 0, then we have a non-zero morphism from (Qs2, W2) to (Q3, W3) & (Q4, Wy);
therefore (Q2, Wa) ~ (Q;, W;) for some ¢ = 3,4. Therefore the morphism -~ is of the form ~;
for some ¢ = 3,4. So until now we have proved that if is the ac-canonical filtration of
(E,V), then (b) holds.

Conversely, if 1 = 0, then the a.-canonical filtration of (F, V') cannot be of type (1,1,2)
because (E,V) contains (E2, V2) ~ (Q1, W1) & (Q2, W2). If there exists any morphism ~; :
(Qi, W;) — (E", V") such that Sa07; # 0 for some ¢ = 3,4, then (E”, V") contains (Q2, Wa) ®
(Qi, Wi), so the ac-canonical filtration of (E,V) cannot be of type (1,1,2). Hence we have
proved that if (b) does not hold, neither do (a), so we conclude. O

Lemma 12.3.2. Letl us fix any pair of exact sequences as (12.78) and (12.79), let us denote
by p and v = (v3,vy) their classes and let us suppose that

(Qth) ;é (Q’L?WZ) VZ S {27374}
Moreover, let us suppose that (E,V) has a.-canonical filtration of type (1,1,2) and let

us assume conditions (12.80), respectively . Then (E,V) belongs to GT(ae;n,d, k),
respectively to G~ (ae;n, d, k).

Proof. Let us assume conditions ; the other case is analogous. If there exists a proper
subobject (E’, V') that destabilizes (E,V) for o, then we must have that (E',V’) is «.-
semistable with the same a.-slope as (E, V). Since (F, V) has a.-canonical filtration of type
(1,1,2), then (E', V') contains (Q1, W7). Since 7’% < %, then any (E’, V') that is a.-stable does
not destabilize (F,V) for af. So we need only to prove that if the rank of any a.-Jordan-
Hélder filtration of (E', V') is equal to 2 or 3, then (E’, V') does not destabilize (E, V) for o .
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Length of any «a.-Jordan-Hoélder filtration of (E', V') equal to 2. If (E',V’) is an
extension of (Q2, W2) by (Q1,W1), then this subobject does not destabilize (E, V') because
of the second part of conditions ((12.80). So let us suppose that we have a (non-split) exact
sequence

0= (Q1, W) <% (B, V') 25 (@i, Wi) = 0 (12.89)

for some i = 3,4. Let us denote by ~ the inclusion of (E’,V’) in (E,V) and let us con-
sider the exact sequence (12.86). Since (Q1,W1) % (Q;, W;) for j = 2,3,4, then we have
Brovoa = 0. Moreover, 1 oy # 0, otherwise we have an induced injective morphism
v (B, V') — (Q1,W7) such that v = a3 o+, but this is impossible because (E’,V’) is
strictly a.-semistable, while (Q1,W7) is ac-stable. Then by exactness of we have an
induced morphism v; : (Q;, W;) — (E”, V") such that v; 0 8 = 1 oy # 0; in particular,
vi 7 0. Since we are assuming that (F, V') has a.-canonical filtration of type (1,1,2), then we
can use condition (b) of the previous lemma, so f2 o v; = 0. By exactness of the second line
of (12.85), ; induces a non-zero morphism =, : (Q;, W;) — (Q2, Wa) such that v; = ag o 7.
Since both (Q2, W) and (Q;, W;) are a.-stable with the same ac-slope, then this proves that
(Qi, W;) =~ (Q2,W3). So (E',V') is an extension of (Q2, W) by (Q1,W1), so it does not
destabilize (E,V) for .

Length of any a.-Jordan-Hélder filtration of (E', V') equal to 3. In this case,
let us denote by (E, V) the quotient (E,V)/(E’, V'), which is an a.-stable coherent system.
Since (Q1,W1) C (E', V') and since (Q1,Wh) # (Q;,W;) for i = 2,3,4, then (E,V) can
only be equal to (Q;, W;) for some i = 2,3,4. If i = 3,4, then (E', V') does not destabilize
(E,V) because of the last condition of (12.80]), so we need to consider only the case when
we have a quotient ¢ : (E,V) — (E,V) = (Q2, Wa). If we use together with the
fact that (Q1,W1) % (Q2, Ws), we get that (2 o a; = 0, so we have an induced morphism
¢ (E", V") - (Q2, W) such that (o = (50 B1. Now let us consider the second line of (12.85)):
if (foay = 0, then we get an induced morphism ¢4 : (Q3, W3)®(Q4, W4) — (Q2, Wa) such that
¢b = (Y oBs. In particular, ¢§ # 0, so we get that necessarily (Q2, Wa) is isomorphic to (Q;, W;)
for some i = 3,4. Then we have (E,V) ~ (Q;, W;) for some i = 3,4, so (E’,V’) does not
destabilize (E,V) for a. If ¢} o ag # 0, then it belongs to Aut(Q2, W) = C*, so the second
line of is split. Therefore, there exists a morphism 6 : (Qs, W3) ® (Q4, Wa) — (E", V")
such that B2 0 8 = id. Let us consider the composition:

3 ¢ (Qs, Wa) = (Q3, W) & (Qu, Wa) = (E", V")

Then B2 o v3 # 0, so condition (b) of the previous lemma is not satisfied, so we get a
contradiction. So if (E,V) has a.-canonical filtration of type (1,1,2), then (} o ay is always
Zero.

So we have proved that there are no proper subobjects of (E, V') that destabilize it for
+
o . O



256  12. Parametrization of objects with canonical filtration of type (2,1,1), (1,2,1) and (1,1,2)

Remark 12.3.1. The previous proof shows also that the only a.-semistable proper subobjects
of (E,V) with the same a,-slope are those listed at the beginning of this section.

Lemma 12.3.3. Let us fiz any quadruple (Qi, W;)i=1,... 4 € H?Zl G; with conditions (12.80),
respectively , and such that:

(Q1, W) % (Q2,W2), (Q3,W3) % (Qa, Wa)

(because of the numerical conditions assumed, we have automatically that (Q1, W1) % (Qi, W3)
fori=3,4). Let us denote by u any class of an extension of the form

0= (Q1, W1) == (B2, Va) == (Q2, W2) — 0. (12.90)
Having fived [p] € P(Ext' ((Q2, W), (Q1, W1))), let us consider the morphisms

Bot ((Qu, W), (Q1, W1)) <25 Bt (Q1, Wi, (Ea, Va)) for i = 3,4

induced by the morphism o, so that the morphism @ of (12.84)) coincides with the pair (03,F).
Moreover, let us write M ([u]) for the set

(E:ctl((Qg, W), (B, V2)) ~ Im ?) & (Ea:tl((Q4, W), (B, V2)) ~ Im ?) .

Such a set has a natural action of C* x C* on it, given by multiplication by scalars on the
2 components. Then we have that the set of all the (E,V)’s that belong to G (ae;n, d, k),
respectively to G~ (ae;n,d, k), that have a.-canonical filtration of type (1,1,2) and graded
©r(Qi, W) is given by a fibration over P(Ext'((Qa, Wa), (Q1,Wh))). The fiber over any

point [p] with p represented by is given by M([u]) :== M ([u])/(C* x C*). In addition,
if we write:

b:= dim Ext'(Qu, Wy), (E2,V2)), ¢ := dim Ext'((Q4, Wy), (Q1, W1)),
d:= dim E’Itl((Qg, Wg), (EQ, VQ)), e := dim E’xtl((Q37 Wg), (Ql, Wl)),

then for every [u| we have the following description.

e If no (Q;, W;)’s are isomorphic for i = 2,3,4, then

M([u]) ~ (P71 P x (PO P,

o If (Q2, W2) >~ (Q3,W3) % (Qa, Wy), then

M([u]) =~ (P41 P72) x (PP~ P,

o If (Q2, W2) >~ (Q4, Wy) 2 (Q3,W3), then

M([u]) ~ (PP x (PP Pe?),
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Proof. To any (E, V') that we want to parametrize we can associate a triple (p, v3,v4) = (, v),

where p and v have representatives (|12.78)), respectively (12.79)), and vs, v4 are as in diagram
(12.87)). Then by lemmas [12.3.1] and [12.3.2] the following facts are equivalent

(a) (E,V) belongs to G (ae;n,d, k), respectively to G~ (ae;n,d, k), and it has a.-canonical
filtration of type (1,1, 2);

(b) for all i = 3,4 and for all morphisms ~; : (Qi, W;) — (E”, V") we have that S 0v; = 0;

moreover i # 0.

In order to give equivalent conditions to (b), let us consider the 2 long exact sequences
obtained by applying the functors Hom((Q;, W;), —) to (12.90) for ¢ = 3, 4:

e — HOHI((QZ',WZ‘), (EQ,VQ)) — HOHI((QZ',WZ‘), (QQ,WQ)) —

Bt (Qi, W), (Qu, 1)) -2 Ext (Qi, Wi), (Ba, Va))

L Bxt ((Q, Wh), (Qa, Wa)) — - (12.91)

The morphisms & and & of (12.84)) coincide with (o3, 0%), respectively with (k3, k%). Now
let us consider the second line of ({12.85)):

0 (Q2, Wa) 2 (E", V") 22 (Q3, Ws) & (Qu, Wa) — 0.

This is a representative for ®(v) = (k3(v), k*(v)). Since (Qs3, W3) % (Q4, Wy), then by
lemma we have that the following facts are equivalent:

(i) for all i = 3,4 and for all morphisms ~; : (Q;, W;) — (E”, V") we have that 82 0; = 0;
(i) w3(r3) # 0 and K%(ry) # 0.
By exactness of the previous 2 long exact sequences, (ii) is equivalent to
(iii) v3 ¢ Im o3 and vy ¢ Im o4,
By substituting in (b), we get that (a) is equivalent to
(¢) p#0, v3 ¢ Im o3 and vy ¢ Im o4,

So until now we have proved that the objects (E, V)’s that we need to parametrize are those
induced by triples (u, v3, v4) that satisfy conditions (c¢). Now let us consider the exact sequence
(12.79): the objects of the form (Es, V) are parametrized by P(Ext!((Q2, Wa), (Q1, W1))).
Moreover, since (Q1, W1) # (Q2,W3), we have that Aut(Fq, V) = C*. In addition, since
(Qg, Wg) o (Q4, W4), we have that Aut((Qg, Wg) D (Q4, W4)) =C* x C*.

Therefore, having fixed [u] in P(Ext!((Qa, W2), (Q1,W1))), there is a natural action of
C* x C* on the set of all (v3,v4)’s as before, i.e. on the set M ([u]) defined as
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(Extl((Qg, Ws), (B, V2)) ~ Im E) @ (Extl((Q4, W), (Ea, V2)) ~ Im ﬁ) .

So having fixed [u] as before, the set of all the (E,V)’s that we want to parametrize is in
bijection with M ([u])/(C* x C¥).

Now let us fix any ¢ = 3,4 and let us consider the long exact sequence (12.91)). Let us
suppose that there is

0 # v € Hom((Q;, W;), (E2, V2));

since (Q1, W1) # (Qq, W;), then necessarily we have that (Q;, W;) ~ (Q2, W5) and that u = 0,
but this is impossible by construction. Therefore,

Hom((Qi, Wi), (E2,V2)) =0 Vi=3,4.

If (Q2, Wa) % (Q3,W3), then o3 is injective, so dim(Im o3) = e; if (Qq, Wa) ~ (Q3, W3),
then dim(Im 03) = e — 1. Analogously, if (Q2, Wa2) % (Q4, Wy), then dim(Im o) = ¢; in the
opposite case dim(Im g) = ¢ — 1; so we conclude. O

Lemma 12.3.4. Let us fix any quadruple (Q;, W;)i=1,... 4 € H?Zl G, with numerical conditions

, respectively , and such that:
(Q1,W1) £ (Q2,Wa) (@3, W3) = (Q4, Wa).

Let us denote by p any class of a non-split extension of the form

0= (Q1, W1) == (B2, Va) == (Q2, Wa) — 0. (12.92)

Having fized (1] € P(Ext'((Qa, Wa), (Q1,W1))), let us consider the morphisms o3 and ot
induced by o as in the previous lemma; since (Q3, W3) ~ (Q4, Wy), we can identify those
2 morphisms. Then we have that the set of all the (E,V)’s that belong to G*(ae;n,d, k),
respectively to G~ (ae;n,d, k), that have a.-canonical fillration of type (1,1,2) and graded
O (Qi, W) is given by a fibration over P(Ext'((Qao, Wa), (Q1,Wh))). The fiber over any

point [p] with p represented by is given by a fibration M([u]) over Grass(2, H"[u])
with fibers isomorphic to H'([u]) x H'([u]), where:

H'([1]) = Im 03 C But*(Qs, Ws), (B2, Va)) = H([u])

and H"([p]) is any vector space such that

H'([u]) © H"([u]) = H([p])-

If we write

b:= dim Ext'((Q3, W), (Fa,Va)), c¢:= dim Ext'((Q3, W3), (Q1, W1)),

then we have that:
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(i) if (Qa2, Wa) % (Q3, W3), then M([u]) is a fibration over a grassmannian Grass(2,b— c)
with fibers isomorphic to C%¢;

(ii) if (Q2, Wa) =~ (Q3, W3), then M ([u]) is a fibration over a grassmannian Grass(2,b—c+1)
with fibers isomorphic to C*~2.

Proof. Using lemmas [12.3.1] and [12.3.2] the following facts are equivalent

(a) (E,V) belongs to Gt (ae;n,d, k), respectively to G~ (ae;n, d, k), and it has a.-canonical
filtration of type (1,1, 2);

(b) for all morphisms 73 : (Qs3, W3) — (E”, V") we have that that S30v3 = 0; moreover u # 0.
In order to give a better description of conditions (b), let us consider the exact sequence

(112.91)) for ¢ = 3 and the following diagram for ¢ = 3,4. Here ¢; for i = 3,4 is the embedding
of (Q3,W3) in the first, respectively the second, component of (Qs, W3)®2; the diagram is

commutative by naturality of the functors Ext!(—, —)’s.
Ext! ((Qs, W3)®2, (Ea, 15)) : Ext!((Qs, Ws), (B2, V2))
7 ~ P
1 = 1
Ext" ((Q3, W3)#2, (Q2, W2)) Ext™((Q3, W3), (Q2, W2)).

Then by (12.87)) we have that

w3(v;) = K3(E(v)) = el(R(V)).

We recall that the second line of ([12.85)) is a representative for (), so for i = 3,4 we have
a commutative diagram with exact lines of the form:

a2 B2

0 (Qa Wa) 2 (B, V") 22 (Qg, W) —— 0 ()
N & N i <
od B3 —
. w. 2 B v wWa) — 3(1,.
0 (Qa, Wa) —— (B!, VI") —— (Qs, W) 0 ) (12.93)

The first line is a representative of

R(v) = (k3(vs), () = (K3 (v3), 53(1a))
and we are imposing that for all morphisms 3 : (Qs3, W3) — (E”, V") we have that fz0v3 = 0.
By lemma [3.3.2] we get that this is equivalent to imposing that x3(v3) and %3 (v4) are linearly



260  12. Parametrization of objects with canonical filtration of type (2,1,1), (1,2,1) and (1,1,2)

independent in Ext!((Qs, W3), (Q2, W2)). This is equivalent to saying that there are no pairs
of scalars (A3, \4) € C? \ {0} such that

A3 -E(Vg) + A4 'E(Vgl) =0.

By linearity of 3 and by exactness of (12.91)), this is equivalent to saying that:

Y (A3,\1) € C?~ {0} we have A3 - v3 + \g - vy ¢ Im o3 =: H'([u]). (12.94)

Now if we look at the sequence ([12.79), we get that Aut((Q3, W3)®2) = GL(2,C) and
Aut(Eq, Va) = C*, so there is a natural action of GL(2,C) on the set M ([u]) of all the pairs
(v3,v4) that satisfy (12.94). The set M([u]) is contained in the set N([u]) of all the pairs
(v3,v4) that are linearly independent in H([u]). There is a natural action of GL(2,C) also
on N([u]) and the quotient by such an action is N([u]) = Grass(2, H([u])). Tt is easy to
see that M ([u]) is an open invariant subset, so this gives a scheme structure to its quotient

M([p) € N([u]).

Let us denote by H”([u]) any complement of H'([u]) in H([g]) (it is not unique, but this
gives no problems in the following lines); then we can write b’ = (h’,0) for every b’ € H'([u])
and

vi = ,v)) fori=34.

2771

Now let us denote by ¢ the quotient H([u]) — H([u])/H'([u]) ~ H"([p]); if we fix any
point < v3,vy > in M([u]), then by definition of M([u]) we have that q(rv3) and gq(v4) are
linearly independent in H”(v), so it makes sense to consider the 2-plane < ¢(v3),q(v4) > in
Grass(2, H"([])). One can prove easily that the induced morphism

M([u]) — Grass(2, H"([n]))

is well defined and surjective.

Now let us fix any object < v4,v) > in Grass(2, H"([u1])). Then for all pairs (v4,v}) in
H'([p]) x H'([p]), the vectors v3 := (v4,14) and vy := (vy,vy) in H(u) = H' (1) ® H" () are
linearly independent, so the point < v3,v4 > sits in the preimage of < v4, v} > in M([u]).
Moreover, a direct check proves that having fixed < v, v} >, any 2 different pairs (v}, 1)) and
(4, 7)) in H'([u]) x H'([u]) give rise to different points of M ([u]) in the fiber over < 14, v} >.
Therefore the fibration M ([u]) — Grass(2, H"([u])) has fibers isomorphic to H'([u]) x H'([1]).

The dimension of H'([u]), and therefore of H”([u]) is computed as in the previous lemma,
so we omit the details. O

Now we give a global parametrization of the objects described before, i.e. we describe
families of schemes that parametrize various types of (E,V)’s when the graded &} _;(Q;, W;)
varies over H?Zl G; and the a.-canonical filtration is of type (1,1,2). Since the a.-canonical
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filtration is of type (2,1,1), then the order of (Q3, W3) and of (Q4, W) is not important. As
we said in remark [12.0.2] we will state only the global results for the case when (ng, ko) =
(ng, ks) = (ng4, kyq); the cases when this condition does not hold are actually simpler to manage
and they are not needed for computing the Hodge-Deligne polynomials of the moduli spaces

G(a;4,d,1).

Let us denote by &, (Q;, W;) a fixed graded with conditions (12.80)), respectively ([12.82).
If (n1, k1) = (n2, k2) = (ns, k3) imposing ([12.80)), respectively (12.82)), is equivalent to impos-
ing that:

ks _k

> —, 12.95
e (12.95)
respectively that

k k

2 (12.96)

no n

If (Qs, W3) % (Q4, Wy), then by lemma|12.3.3|the corresponding (F,V')’s are parametrized
by triples ([u], [v3], [v4]) with

[/-L] S P(Eth((Q2> W2)7 (Q1> Wl)))7
representative ((12.90) for p and

4
([va], [va) € M([u]) C [ [ P(Ext! ((Qis Wi), (B2, V2))).
1=3

We are considering the case when the (Q;, W;)’s are all of the same type for i = 2,3,4.

Therefore we need to take into account the possible isomorphisms between them. So, having
fixed [u], we need to consider separately the following cases.

(1) If (Q2, W3) ~ (Q3,W3) % (Q4,Wy), then the roles of (Q3,W3) and of (Q4, Wy) are not
interchangeable, so we need to consider ordered pairs ([v3], [v4]).

(2) If (Qi, W;) % (Q4, W) for all i # j € {2,3,4}, then the roles of (@3, W3) and of (Q4, Wy)
are interchangeable, so we need to consider unordered pairs ([vs], [v4]).

Note that since the order of (@3, W3) and (Q4, Wy) is not important, we don’t need to
consider also the case (Q2, Wa) ~ (Q4, Wy) % (Q3, W3).

If (Q3, W3) ~ (Q4, Wy), then by lemma|l12.3.4| the corresponding (E, V')’s are parametrized
by pairs ([u], < v3,v4 >) with

[,UJ] € P(Eth((Q27 WQ)a (le Wl))))
representative (12.92) for p and
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< vs,vs >€ M([u]) C Grass(2,Ext!((Qs, W3), (E2, V2))).

So, having fixed [u], we need to consider separately the following cases.

(3) If (Qa, Wa) # (Q3, W3) ~ (Q4, Wy), then the corresponding (E,V')’s are parametrized by
a fibration described as in lemma [12.3.4] (i).

(4) If (Q2, Wa) ~ (Q3,W3) ~ (Qq, Wy), then the corresponding (E,V)’s are parametrized by
a fibration described as in lemma [12.3.4] (ii).

These 4 cases are taken into account by propositions [7.7.1] [7.7.2] [7.7.3| and [7.7.4] respec-
tively.

The proof of proposition is the dual of the construction of the scheme R}Lb, cdiij I
proposition by using lemma instead of lemma [12.1.5] so we omit all the details.
We only remark that if we use lemma with the condition that (Q2, W2) ~ (Qs, W3),
then we get that

e = dim Eth((Qg, Wg), (Ql, Wl)) = dim Eth((QQ, Wg), (Q1, Wl)) =a,

so we only need the indices a, b, ¢, d and not the index e of that lemma.

The proof of proposition is on the same line of the construction of the schemes of the
form Ré7b767d76;i7j for (b, c) < (d,e) and of the schemes of the form Rib’C’b’C;i’j/Zg in proposition
7.5.2l The only significant difference is that we use lemma [12.3.3|instead of lemma [12.1.5} so

we omit the details.

Proof of proposition [7.7.3 The construction of these spaces follows the lines of the proof of
proposition in order to get a family of fibrations {@g; : Ra;i — Ua;i}i and for every i a

universal family of non-split extensions parametrized by Rg.;:

~ A N o~ * 3 A o-a;i
O —> (‘10;‘;7:7 SO(Z,’L)*(p{l?pl) (Ql?Wl) ®Ra1 ORa,z(l) —>
Tosy (82;a;i7]>2;a;i> 2o (95;;1'7 @a;i)*(ﬁéaﬁ2)*(g2v WQ) — 0, (12.97)

where p; and po are the projections from lA](m- C Gl X @2 to its factors. Now let us fix any
index ¢, let us consider the projections

D3 : Rayi X Gz — G3, P12 : Rey x G3 — Ry

and let us define the following scheme

Ua,b,c;i = {t € éa;i X GB s.t. dim Eth((ﬁéaﬁS)*(Q& Wi’))ta (ﬁ&?aﬁl?)*(é‘&a;ia ij;a;i)t) = b,

dim Ext' (55, §3)*(Q3, Wa)i, (Blas P12)* (Plaii asi)* (91, H1)*(Q1, Wa i) = ¢,
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Hom((pho, P12)* (Pl Pasi) (B P2)* (Q2, Wa )y, (Bs, B3)*(Q3, Ws),) = 0}

By proposition m, this is a locally closed subscheme of ]:Za;i x Gis. Moreover, by applying
lemma we get that Ua,b,c;i has a finite disjoint locally closed covering {Ua,b’c;i’j}j such
that for all j the sheaf

Eaabac;ivj = 5:Et7lr <(}3§7ﬁ3)*(@3a W3)’ (ﬁ/1271312)*(é2;a;ia g2;a;i))

a,b,¢;1,j

is locally free on Ua,b,cn',j and commutes with base change. By construction of Ua,b,c;i,j and of
Ua;i, for every point t of Ua’b’c;m we have that:

Hom ((ﬁé, $3)*(Q3, Wa)s, (Blas P12)” (Esais Vz;a;i)t> =0

Therefore, by proposition and corollary there exists a grassmannian fibration

~ A o ~ v ~
92;a,b,c;z‘,j : Qa,b,c;i,j = Gra58(27Ea,b,c;i,j) — Ua,b,c;z‘,j

and a universal extension (in the sense of corollary i parametrized by Qa,b,o;i,j

0— (A/Q;a7b,c;z‘7ju éQ;a,b,C;i,j)*(ﬁ/HaﬁlQ)*((éZa;i’ 1}2;(1;1') — (ga,b,c;i,ja ]}a,b,c;i,j) —
= (B i s O2sabicsig)* (B D3)* (D3, W) Dy i; M2iabeiig = 05 (12.98)

where ﬂg;a’bmd is a locally free sheaf of rank 2 on Qg ;. For simplicity, we rewrite such

an exact sequence as

0= (Eza,; Vaiai) = (Eapeiis Vapeig) = (D, W) ®g - Moaapeij 0. (12.99)
Moreover, we consider the morphism

A éz;a,b,c;z:j ~ S A S
Qa,b,c;i,j ? Ua,b,c;i,j — Ra;i X Gz —» Ra;i

and we denote by

0— (01, W) =% (€20, V2:0,i) 2 (Qa, W) — 0.

the pullback of (|12.97)) via that morphism. Now let us consider the functor

s M2;a,b,c;z',ja (gQ;a,iu VQ;a,i)) —

Ragi Ext! ((@3’W3) ®Qa,b,c,m
— Bxt! (03, W) 0, ..., Maabeg: (Q2. Ws)

induced by Kq;;. Then it makes sense to apply Kq; to the extension represented by (12.99)).
So we get a commutative diagram with exact lines as follows:
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0— (Ez;a,z‘,vz;a,i) - (éa,b,c;i,j7va,b,c;i,j) - (@&WS) ®Qa’bﬁc;i7j M%mb,c;aj — 0
Ea;i % N

- A ~ B = — -
0—— (Q2,Wa) —— (&} iy Vapeis) = (@ W3) @g - Maapeij — 0.

a7b7c71’7j’ a7b7c7z7‘7
Now let us fix any point ¢ of Qa,b,c;i,j and let us denote by

0= (Q2, Wa) 25 (E", V") 25 (Q3, W3)®2 — 0 (12.100)

the restriction of the second line of such a diagram to ¢. Let us denote by (v3,,v},) the
class of (12.100)). Then by lemma we have that v3, and v}, are linearly independent in
Ext!((Q3, W3), (Q2, Wa)) if and only if for all morphisms

V3t (Q3’W3) (Q37W3)t - (gabc,z,pvg,b,c;i,j)t =: (EH’ VH)

we have that ; o y34 = 0. By construction of Q%b,c;i,j we have that (Q2, Wa2) # (Q3, W3).
Therefore, given any 73 as before, by exactness of (12.100) we have that ; o v3; is non-zero
if and only if 3¢ is non-zero. Therefore, 13, and v}, are linearly independent if and only if

HOHI((Q:),, W3)a (E”7 V”)) =0

So the set of all the points ¢ of Qa’b,c;i,j such that v, and v}, are linearly independent
coincides with the set

Ra,b,c;i,j = {t € Qa,b,c;i,j s.t. Hom((@?nwii)tv ( Alel,b,c;i,j>f)c/z,,b,c;i,j)t) = O}‘
By lemma , this is a locally closed subscheme of Qa,b,c;z‘,j- We denote by

A

@abc;i,j : Rabc,z,j — Uabcz

the restriction of éQ cabeiinj TO Rabc” Then the proof of lemma 4| shows that the fiber
of Pgpciij Over any point of Uabmj is isomorphic to C%¢ x Grass( b —¢). Now let us fix
any point r of Ra beiij and let us denote by ’ its image in Ra ;i via P12 0 Qg peiij- Then let us
consider the restriction of (12.97) to " and of (12.99) to r:

— (Q1, W) -5 (B2, Vo) - (Qa, Wa) — 0,
0 (B2, Va) 5 (B, V) % (Qs, W3)®* — 0.

Let us denote by u, and v, = (v3,,v4,) the corresponding classes. By construction of
Ea;i we have that . # 0. By construction of Qa’b’cn”j we have that v3, and vy, are linearly
independent. In addition, by construction of R ; we have that vs, and vy, are linearly
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independent.

So if we assume conditions (12.80)), by the proof of lemma [12.3.4] we conclude that (E, V)
is an object of G*(ac;n,d, k). Now by using the family (éa,b,c;i,jvva,b,c;i,j) restricted from
Q%b,c;m to Ra,b,c;i,jy we get an induced morphism:

‘:ja,b,c;i,j : Ra,b,c;i,j — G+(Oéc; n, d7 k)

Then we conclude as usual. O

Proof of proposition 7.7 The proof is on the same line of the proof of the previous propo-
sition, with ¢ omitted or replaced by a whenever it is necessary, so we skip the details. The
only significant difference is in the definition of Ra,b;m. Also in this case we need to describe
necessary and sufficient conditions such that the sequence is a representative of a pair
of linearly independent vectors. In this case such a sequence has the form

0= (Qs, W3) 25 (B", V") 2% (Q3, W3)®2 — 0, (12.101)

so dim Hom((Qs, W3), (E”, V")) > 1. Actually, by exactness of (12.101)) we have that the
following facts are equivalent

e for all morphisms 3 : (Q3, W3) — (E”, V") we have 5 o3+ = 0;

e dim Hom((Qs3, Ws), (E", V")) = 1.

Therefore in this case the correct definition for the scheme Ra,b;i,j is the following:

Ra,b;i,j = {t € Qa,b;i,j s.t. dim HOHI((@g,Wg)t, (étlzl,b,c;i,j’]}clll,b,c;i,j)t) = 1}

The rest of the proof is essentially unchanged, so we omit the details. O






Chapter 13

Case n=2, k=1

In this and in the next chapters we compute the Hodge-Deligne polynomials of some mod-
uli spaces of coherent systems.

In particular, in this chapter we consider the case when (n,d, k) = (2,d,1). By [BGMN,
§2 and proposition 4.2] the non-zero virtual critical values for such a triple are all in the set

nd —n'd
n'k — nk n—k

d
Is.t.OSk'Sk‘, 0<n' <n, n'k+#nk, d’eZ}m]O,[.

In our case, this gives

2d' —d
{1_%, st. ¥ =0,1, d eZ}m]o,d[,

that is

{2d’—d,g<d’<d}u{d—2d’,0<d’<g}

where the first set corresponds to destabilizing subsystems of the form (1,d’,0) and the second
one corresponds to destabilizing subsystems of the form (1,d’,1). Actually, the 2 sets coincide
both with the set

d
{a(j) =d — 27, O<j<2}.

Since we will also be interested in the moduli space G (2,d,1) = G(d —¢;2,d,1), we will
also consider a(0) = d as a critical value, so that G(d —¢;2,d,1) = G(a(0)7;2,d,1). In other

words, we are considering all the values:

O<an;1J> <an;1J —1) << al) <al0) =d.

All these values will be actual critical values, as we will see below (anyway, even if some
a(j) is not an actual critical value, we can consider it as a critical value, such that when we

267
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cross it we neither add nor remove anything from our moduli space).

13.1 The moduli spaces G*(a(j);2,d,1)

Let «(j) be any critical value for 0 < j < d/2 and let us suppose that (E,V) belongs
to GT(a(4);2,d,1). Then by lemma [1.0.6] we get that (F,V) appears in a non-split exact
sequence:

0= (Q1,W1) = (E,V) = (Q2, W) = 0 (13.1)

where:

(a) (Q1,W7) and (Q2, Ws) are both «(j)*-stable with % <kb=1lch,

2

3

(b) (Q1,W7) and (Q2, Wa) are both a(j)-semistable with the same «(j)-slope as (E, V).

Conversely, every such (E,V) is actually a point of GT(a(5);2,d,1). Indeed it is a(j)-
semistable by (b) and proposition and it is a(j)-stable because its only proper coherent
subsystem is (Q1, W1), which does not destabilize (E,V) for a(j)" and destabilizes it for
a(j)~ because of conditions (a) and (b). Moreover, every such (E,V) is completely deter-
mined by the class of the non-split extension (13.1]), up to multiplication by invertible scalars.

Condition (a) implies that n; = no = 1 and that k1 = 0, so k2 = 1; condition (b) implies
that d; = (d+«(j))/2 = d — j. By the conditions on j, this proves that d; = d—j and ds = j
are both non-negative integers. Now

(Q1,W1) € G(1,d — j,0) = J¥IC =: G1, (Qa2,Wa) € G(1,54,1) =: Ga. (13.2)

For every pair of objects (Q1,W7), (Q2, W2) in those 2 spaces, using proposition we
have that

dim Ext!((Q2, Wa), (Q1, W1)) = Co1 + dim HY, + dim HZ,.

Now both (Q1, W1) and (Q2, Wa) are a(j)*-stable and juy(j)+ (Q2, Wa) > g+ (Q1, W1)
(as a consequence of properties (a) and (b)). Therefore by lemma HY, = 0. Moreover,
by [BGMN, lemma 3.3], we have that also H3, = 0. Therefore

dim Eth((QQv WQ)) (Qla Wl)) = 021 -
= mng(g — 1) — ding + donq + kody — kQTll(g — 1) — ki1ko =
=(g-1)—-(@d-j)+j+(d—j)—(9-1) =3
Now the moduli spaces G71 and G5 are both smooth and irreducible, therefore also G1 x Gy is
so. On both G;’s there are universal families of coherent systems (Q;, W;) of coherent systems
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(because of [BGMMN], proposition A.8]), so we can apply proposition for r = 2 and we
get that there is a projective bundle
(2 Rj — G1 X GQ

with fibers isomorphic to P?~! and an injective morphism to G(a(5)";2,d, 1), such that the im-
age coincides with G (a(j); 2,d, 1). Therefore, the Hodge-Deligne polynomial of G*(«(5);2,d, 1)
is given by

P =HD(GH(d—2j;2,d,1)) =

= HD(JICYHD(G(1, 5, 1)) HD(P' ") =

— J g 97
g1 — (w) oeff (1 4+ux)I(1l+vx)x
1—uv 20 (1—2)(1 —uvx)

=(1+u)f?(1+wv) (13.3)

Note that when j = 0, we get that a term of the form HD(P~!') = HD(2) = 0, so p° = 0,
as it should be; indeed in this case we know a priori that G(d;2,d,1) = G(d+¢;2,d,1) = @
since G(«;2,d, 1) is non-empty only if a €10, d|.

13.2 The moduli spaces G~ (a(j);2,d, 1)

Let us turn to G~ (a(j);2,d,1). By applying again proposition we get that every
(E,V) e G~ (a(j);2,d,1) appears in a non-split exact sequence ([13.1)) where:

(a’) (Q1,W1) and (Q2, W2) are both a(j)~ -stable with % > % =1> k.

ng’

(b’) (Q1,W1) and (Q2, Ws) are both «(j)-semistable with the same «(j)-slope as (E,V).

Conversely, as before it is easy to show that every such (E,V) is actually a point of
G~ (a(j);2,d,1); moreover any such (E,V) is uniquely associated to a non-split exact se-
quence (|13.1)) with conditions (a’) and (b’), up to multiplication by invertible scalars.

Condition (a’) implies that n; = ng = 1 and that k; = 1, so ko = 0. Moreover, condition
(b’) implies that di + a(j) = (d + «(j))/2, so d1 = (d — a(j))/2 = j. By the conditions on j,
this proves that d; = j and d2 = d — j are both positive integers. Now

(Q1,Wh) € G(1,4,1) :=G1, (Qa, W) € G(1,d — j,0) = J¥IC := Go. (13.4)

For every pair of objects (Q1, W1), (Q2, Wa) in those 2 spaces, we have that p,(j)- (Q2, Wa) >
()~ (Q1, W1) as a consequence of properties (a’) and (b’). Therefore, by lemma there
are no morphisms from (E», Va) to (E1, V1), so HY; = 0. Moreover, by [BGMN] equation (11)],
we have that also H3, = 0. Therefore
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dim Ext'((Q2, W2), (Q1,W1)) = Co1 =
= nlng(g — 1) — dlng + d2n1 + kzdl — k‘gnl(g — 1) — klkg =
—(g-1)—j+d—j=g+d—1-2j
Now as in the previous section we get that the space G~ (a(j);2,d, 1) is given by a projec-

tive bundle over G x Gy with fibers isomorphic to P9T4-2-2
Therefore, the Hodge-Deligne polynomial of G~ (a(j);2,d, 1) is given by

¢ = HD(G™(d~2j;2,d,1)) =

= HD(J*ICYHD(G(1, j, 1)) HD(PIT4272) =

1 — (uw)9td=1-2 (14 ux)9(1 + vx)9x ™

=(1 I(1 g ft 13.5
(14 w1 +0) 1—wv % (1 —2)(1 —uvz) (13.5)
Remark 13.2.1. This formula makes sense also when j = 0. In this case we know that

G~ (d;2,d,1) = G(d — ¢;2,d, 1) since

G(d—¢;2,d,1) NG (d;2,d,1) = G(d +¢;2,d,1) ~ G (d;2,d,1) = @.

Obviously in this case there is a shorter way to compute the Hodge-Deligne polynomial of
G(d—¢;2,d,1) = Gr(2,d,1) = G(«(0)7;2,d,1). Since (n — k,d) = (1,d), we can apply the
last part of theorem 5.4 in [BGMN] and we get that G, is a fibration over M(1,d) = J¢C
with fiber the grassmannian

Grass(k,d 4+ (n — k)(g — 1)) = Grass(1,g + d — 1) = P9+4-2,

Therefore,

HD(G(a(1)T;2,d,1) = HD(G(a(0)7;2,d,1) = HD(GL(2,d, 1)) =

+d—1

g1 — (uv)? .
1 —wv

Actually a direct check proves that ([13.6]) coincides with (13.5) for j = 0 once one ob-

serves that the last part of (13.5) is equal to 1 since the function depending on x is actually

holomorphic around x = 0. Even if (13.6)) is simpler to write, we will use anyway ((13.5)) also
in this case, since it will be simpler to sum all the various terms coming from crossing the

= HD(JICYHD(PH972) = (1 4+ u)9(1 + v) (13.6)

critical values. We remark also that if we evaluate the previous polynomial in u = v =: ¢, we
get exactly the Poincaré polynomial of [BGMMN] proposition 8.4].



13.3 The polynomials for G(a(k)™;2,d, 1) 271

13.3 The polynomials for G(a(k)™;2,d, 1)

Theorem 13.3.1. For every smooth projective curve C of genus g > 2, for every d > 0 and
for every critical value

d
a(k)=d—2k 0<k<g

we have that:

HD(G(a(k)™;2,d,1)) = (13.7)
_ (I+w)9(1+wv)d coeff (14 ux)d(1+vz)d [ (uv)rz" B (uw)9Fd—1=2k =k
1—uv (1—2)(1—wvz) |1—z(uw)! 1 — z(uv)?

Remark 13.3.1. Let us compare this result with proposition If we set dy :=d, dy :==0
and dy = d; — k, then we get that

HD(N,(2,1,d,0)) = (1 +u)?(1 + v)IHD(G(a(k)"; 2, d, 1)).

This makes sense since we can consider every a-stable coherent system (E,V) of type
(2,d,1) as a o-stable triple (E1, Ea, ¢) of type (2,1,d,0) with the additional restriction that
Ey =0 =0®YV, instead of Ey being any point of the Jacobian J°C, whose Hodge-Deligne
polynomial is exactly (1 + u)9(1 + v)9.

Proof. By combining (13.3)) and (13.5)), we have that for every a(j):

HD(G(a(5)732,d,1)) = HD(G(a(5)*52,d,1)) = ¢’ —p' =
g g g 9=
_ (14 uw)9(1+ ) cocff (14 uz)d(1+vzx)iz
1—wuv 0 (1 —2)(1 —uvz)
Now let us fix any critical value a(k) and let us use formulae (13.8)) for all 0 < j < k. We
recall that G(a(0)%;2,d,1) = @. Therefore,

[(uv)? — (uv)9Fd-172]], (13.8)

HD(G(a(k)™;2,d,1)) = HD(G(a(k) ;2,d,1)) — HD(G(a(0)";2,d,1)) =
_ (I+u)9(1+wv)9 Z cooff (1 +ux)9(1 + vx)dz™ )i — (up)T+1-2] =

e
1—wv oSite (1 —2)(1 —uvx)
:(1—|—u)9(1—|—v)g Z Coeﬁ,(1+ux 9(1+v3:9{< ) v)9td- 1( 1 )j]:
1 —uw —~ 20 (1 —2)(1 — uvx) x(uv)?
0<j<k
g g )9 k+1 1
:(1—|—u) (1+v) Coeﬁ(1+ux (1 +vx)d 1 (1_%) N
1—wuv 2 (1—2)(1—uvx) x

— (w9t (1 - (@) kH) <1 — :E(;))Q> 1] =

(14 u)9(1 +v)9 (1 + uz)9(1 + vz)? [xk“ — (uv)k+t N

= ff
1—uw R (1—2)(1 —uvz) zk(z — uv)
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—(uv grd—1—ox T (wv)? 2 — 1 _

(u) ok (z(uv)? — 1) }

_ (1+w)9(1 + )9 couft (1+uz)9(1 + va)? [ (wv)kz—k - (up)9Hd—1-2k g~k
1—uv 20 (I—2)1—wz) [1—z(uv)? 1 — z(uv)?

O]

Remark 13.3.2. Formula evaluated in u = v =: ¢ agrees with Thaddeus’s formula in [T},
proof of formula (4.1)]. The only difference is an additional multiplicative term (14 ¢)29 given
by the fact that in [T] the determinant of the vector bundle E of a coherent system (E,V)
is fixed, while in our case this is free to vary over J?C, whose Poincaré polynomial is exactly

(1+1)%.

Remark 13.3.3. Let us verify that Poincaré duality holds for the polynomial obtained in the
previous theorem. This amounts to substituting v with v~! and v with v~! in the previ-
ous formula and verifying that identity holds. We recall that whenever f(x,u,v) is a
meromorphic function in x around x = 0 and u, v are indeterminate, then by considering the
expansion of f(x) in a Laurent series, we can compute

coeff flx) = coeff f(x)

for every non-zero constant c. In particular, since u and v are indeterminate, we can use
¢ =uw. So if we write

flz,u,v) =

(14 ux)9(1 + va)9zF [ (uv)* B (uv)g+d—1—2k]
(1—2)(1 —uvzx)

1 —z(uv)~! 1 — z(uv)?
and g(u,v) := coeff ,o f(x,u,v), then

glu vl = C(;%H fluvz,u™t o) =

= coeff (1 + vz)? (1 + uz)? (uv) " Fa—" [ (uv) " _ (uv)2k+1—g—d} =
20 (1 —uvz)(l —x) 1— )2z 1— a(uw)}
= coeff (L+uw)?(1 + va)sa" ) (uv)HH=o7 [(uv)g+d_1_2k B (uv)* ] =
20 (1—2)(1 —uvx) (uv)k 1— (w)2z 1 —a(uv)!

= —(w) 9 (u,v).
So if we denote by p(u,v) := HD(G(a(k)™;2,d,1)), then:

o1y (o)1 4 u)I(1+v)d 1—g—d _
p(u y U ) - (uv)*l(uv o 1) (U/U) g(“a U) -
1+u)d(1+v)9

(1 —uv)
Now by [BGMN| propositions 3.3 and 3.4], we get that all the moduli spaces G(«;2,d, 1)
for o non-critical are smooth. Moreover, by [BGMN| lemma 3.5] their dimension coincides

— (u,u)2—2g—d (

g(u,v) = (uv) "I p(y v).

with the expected dimension
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=49—-44+1—-(1-d+29—-2)=2g+d—-2.
Therefore, the polynomials of all the moduli spaces G(«;2,d, 1) for a non-critical satisfy
Poincaré duality.
By combining theorem [13.3.1 with (13.5) (with j replaced by k), we get the following

corollary, that will be useful in the computations for the cases n =3,k =1land n=4,k =1

Corollary 13.3.2. For every curve C as before and for every critical value

d
a(k)=d—2k 0<k<g

the Hodge-Deligne polynomial of

G*(a(k);2,d,1) ~ G(a(k)T;2,d,1) ~ G (a(k); 2,d, 1) ~
~ G(a(k)”;2,d,1) NG (a(k);2,d,1)
s giwen by:

(I+u)9(1+wv)9 . (1 4+ ux)9(1 + vx)?

HD(GH((k);2,d, 1)) = 1—uv ?c%ff (1-2)(1—wz)
o)t wp\9+d—1-2k,—k
1 (_ x)(uv)_l = i —z(w)? v (uv)ﬁd%lxk} N
_ w4 (U u)?(Ltoa)? [ (o)t ()t k]
1—wuv 2 (I1—2)1—wz) [1—z(uv)? 1 — z(uv)?

Remark 13.3.4. Note that when k& = 0, then G5(d;2,d, 1) = &, so we will get that the previous
polynomial is zero. This holds since (13.6)) coincides with (13.5)) for j = 0, as we already said
before.

Remark 13.3.5. As in remark[13.3.1] this formula coincides with that given in [M], proposition
5.4] for the moduli spaces if stable triples, up a the multiplicative term (1 4 u)9(1 4 v)9, once
we set in that formula di :=d dy := 0, dj == d — k.

13.4 A more explicit formula for a small and d large

The formula of theorem holds for every value of k and for every value of d, that is
for all a that are non-critical for (2,d,1). We would like to have a more explicit formula, at
least for some values of d and k. In order to do that, let us first state the following lemma,
taken from [MOVG! proof of proposition 8.1].
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Lemma 13.4.1. Let a,b,c € C be all distinct and different from zero and let f(x) be any
holomorphic function in C ~ {0} such that the function

f(x)
1—az)(1—bzx)(1l—cx)

g(z) :=
(
has no residue at co. Let us define

a b c
Y eTne—o P mat-g T emae—y

Then:

xf(x) B 1 1 1
C%Eﬂ—wmx1—&@ﬂ—c@__Af<;>+Bf<b)+Cv<c>'
In particular, let usfix a = 1, b = uv, ¢ = (uv) " and f(z) = (wv)*(1+uzx)9(1+vz)9z=r1,

Then we have to ensure that the function g(z) has no residue at co. In order to do that, let
us consider

B oty = g5 =
w)k (2 +u)? (z +v)9 z—a)(z—0b)(z—c)\ "}
O (G =L =G

k
N (10 R I CR) T
=0 (z—a)(z—"0b)(z—2c)

Now we are working with u,v as variables, therefore we can always find infinitely many
values of them so that the first part of this expression has no zeros or poles at z = 0, so the

zeros or poles at z = 0 are completely determined by zF~29%2

In particular, we don’t have
residues at oo if k > 2g — 2. Now we recall that 0 < k < d/2. So in order to apply the lemma

we must have:

d>4g—4 and 29—2<k<d/2. (13.9)

Remark 13.4.1. In terms of critical values, we have that 0 < a(k) =d—2k < d—4g+4 =: a.
If d is even, then & > 2, while if d is odd, then & > 1; we recall that for d even the smallest
critical value is a = 2, while for d odd the smallest critical value is a = 1. Therefore, in both
cases if d > 4g — 4 we have that our results will apply to a non-empty set of critical values
containing the smallest critical one.

Now, having fixed f as before,

b= ! T (20 e PP
Af<a>_(1—uv)(1—(uv)_1)( )" (14 u)?(1+v) _(1—uv)2(1+ )9 (1+wv)7;
1 — uv UUk ,U—lg u_lguv k+1:
w(J uw—Mw—WWﬂ()ﬂ+ )9(1+u™ )9 (uv)
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_ (uv)? ()P <v+ 1>9 <u+1>9 - (uv)?kt3-9 (14 u)(1 + o)

(1 — u?))(l — (uU)Q) v u 1— U’U)(l _ (U,U)Q)
wv) L
“ <1) ~ () ! —(1)()(uv)_1 gy () (L w0 (1 ) ()T =
- T () (14 u20)?(1 4 )9 ()1 = LV L+ uo)s

(1 —wv)(1 — (uv)?)
Therefore if conditions ((13.9) are satisfied, then:

(1 —uv)(1 — (uv)?)

coeff LT ur)?(d +vw)? (wo)ta™® coeff L uz)? (1 + va)d(uwv)t e e
20 (1I—-2)1—wz) 1—x(uv)! 20 (1—2)(1 —wvz)(1l — x(uv)~1)
= coeff zf(z) _

2 (1 —ax)(1—bz)(1—cx)
—(uv)* (1 4+ u)9(1 + v)9 N (uv)2F 3791 + w)9(1 4+ v)9 + (1 + v?v)9(1 + uv?)9
(1 — uv)? (1 —wv)(1 — (uv)?) '
Now let us fix a = 1, b = uv, ¢ = (ww)? and f(z) = (uwv)9+t91726(1 4 uz)9(1 4 va)92=F1,
Then:

1y (uv)9+d_1_2k(1 +u)9(1 + v)g.
Af () T w)(1— (w)?)

1\ _ uv wp)9+a—1-2k . w19 (o) =
B (3) = o i gy (0 0 )

It S Tluty 1 uv)?F u v)?;

= e () () = SR 0t o

} _ (W)Q ww)9Hd—1-2k w219 W20) N9 (un) 2k 2 =
€1 (2) = G s () R (L () )91+ () )

- T e (¢ Z;“Q)g € Z;f“)g _

(uv)d+272g
(1 —uv)(1— (uv)Q)(
As before, in order to apply the lemma we need conditions to be satisfied. If such
conditions hold, then:

14 uv?)?(1 4 u?v)9.

(14 ux)9(1 +ovx)9 (uv)9td-1-2kg=k

C(;;%Pf 1-—2)1—wz)  1—(w)lx
— coeff (14 uz)9 (1 + vx)9 (uw)9+d—1-2kp=k=1y — cooff xf(x) _
0 (1—2)(1 —uvz)(1 — (uwv)?z) 20 (1 —ax)(1—bz)(1l—cx)
()Tt 4 )9 (1 4 0)9 A+ (u0) 221+ wP0)9 (1 +ww®)? (o)1 4+ w)9(1 4 0)f
N (1 —wv)(1 — (uv)?) (1 —uv)? '

So by using theorem [13.3.1], we get the following formula.
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Corollary 13.4.2. If conditions are satisfied, then

HD(G(a(k)™;2,d,1) =

(14 u)9(1 +v)9 { — ()M 1+ w)I(1 +v)9
1—wuv

(1 —uw)?
(uv)#H3=9(1 4+ w)9(1 +v)9 + (1 + u?0)9(1 + uv?)9
(1 —wv)(1 — (uv)?)
(uv)g-l-d—l—Qk(l + u)g(l + U)g + (uv)d+2_29(1 + u2v)9(1 + uv2)9+
(1 —wv)(1 — (uv)?)

(wo)t* (1 + u)9(1 +0)9)
T U wp } -

_l’_

_ (14wl +0v)9 { [(uv)?=* — (uv) ) (1 +u)9(1 + v)9+

(1 —uv)? 1—wuv

v 2k+3—g _ uv g+d—1-2k 1+ w)9(1 + )
M e o,

L= ()T 4 w?o)? (1 + ue?)s }

1 — (uv)?
= P {0 o () — ) o+ (a0

—(uv)ﬁd*l*%} (14 w)(1+0) +[1 = (w)PT2729](1 + u20)9(1 + uv2)g} .

Remark 13.4.2. Let us verify that Poincaré duality holds also for such a polynomial. This
amounts to substituting u with v~ and v with v~! in the previous formula and verifying that
identity (8.3) holds. If we write for simplicity p for the previous polynomial, then:

“1 1y = (14w (14 v)9(uv)™9 { {1 +uv (uv)F+! — (yp)d—F
7 (1 —wv)?((uwv)? — 1) (uv)=* uv (uv)dH1

(up)9td—1-2k _ (uv)2k+3_9] (14 u)f(d+0)?
w0y ()

p(u +

+ +

UU d+2 29 uv 39

B 1 ()1 4 v)f )
(wo) 249 (1 —ww)?((uw)? —

+[( v)d+2-29 1} (1 + u?v)9 1+uv)}:
(
2

3 R E D Lt

()79 (u0)TH ] (1 )9 (14 v)7+
+(1- (uv)d+2_29] (1+ u?v)9(1 + uvz)g} = (uv) " @92y, v).

As we already stated before, the dimension of G(«;2,d, 1) for a non-critical is 2g + d — 2,
so the polynomial written in the previous corollary satisfies Poincaré duality.
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Using remark [13.4.1] provided that d is big enough, we can apply the corollary for the first
critical value, namely a(|(d —1)/2]), i.e. « =2 if d even and a = 1 if d is odd.

If d is odd, then k = %. In this case, d—k = di; = k+1; moreover, 2k+3—g=d+2—g
and g +d —1— 2k = g. Therefore we get:

Corollary 13.4.3. Let C be any curve as before; if d is odd and d > 4g — 4, then

(1(i ;va;)(§1_+(%2) {79 = (e

(L w)?(1 4+ 0)7 + [1 = (o) ™21 4 u?0)? (1 4+ uw?)}

HD(Go(2,d,1)) =

Remark 13.4.3. We can rewrite this polynomial as

(1+uw)I(1 +v)?(1 — (uv)™+2729)

(1 = uv)2(1 — (uwv)?) AL+ w*0)9 (1 4 uwv?)? — — ()9 (1 + u)9(1 + v)9]} =

1— (uv)dJerZg

= HD(M(2,d)) - = HD(M(2,d)) - HD(P+1729),

1—wv

So this agrees with the known fact that if d is odd and d > n(2g — 2) = 49 — 4, then
Go(2,d,1) is a grassmannian fibration over the moduli space M (2, d) of stable rank 2 bundles
of degree d, with fiber over any vector bundle F given by

Grass(1, x(E)) = Grass(1, H*(E)) = Grass(1,d + 2(1 — g)) = P4T1729,

Here the first identity comes from the fact that H'(E) = 0 for d > 4g—4, while the second
one is Riemann-Roch. For the Hodge-Deligne polynomial of M (2,d), see (8.10).

Ifdiseven,thenk:%—l; sod—k:%—i—l,k—i—l:%, 2k+3—-—g=d+1—g and
g+d—1—2k=g+1, so we get:

Corollary 13.4.4. Let C be any curve as before; if d is even and d > 4g — 4, then

HD(Go(2,d,1)) = (ﬁ Zngjf_+(zg)’;) {11 ()™ 229)(1 + w20)9(1 + wo?)7+

+[(1 + uv)(uv)%(uv — 1) + (w)9 — (ww)I (1 4+ )1 + v)g} =

= (1 1’;2 (1 +(Z’)Ug)2> {[1 . (uv)d+2—29](1 + u2v)g(1 4 U’L)2>g—|—

(1~ (u0)®) + (wo) ™1 (1 — (uo)®29)](1 +u)?(1 + v)g}-

vl

—[(uwv)

We remark that the leading term coincides with the leading term of (8.11]) times HD(P4+1-29).
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13.5 Comparison with the cases g=0and g =1

Let us compare the previous results (that a priori are valid only under the hypothesis g > 2)
with the literature about ¢ = 0 and ¢ = 1. When g = 0, the Hodge-Deligne polynomials of
the moduli spaces G(«;n,d, 1) for all n and for all & non-critical for (n,d, 1) were computed
in [LN]. In that paper the following notation is used:

d=na—t st.aeN, 0<t<n

(this is formula (1) in that paper). According to that notation, G, denotes any moduli space
G(a;n,d, 1) for o in the range en+t < o < (e +1)n+t whenever 0 < en+t <d/(n—1). In
our case, n = 2, so:

e tis 0 or 1 according to the parity of d;
e ¢ is any natural number such that 0 < 2e+t < d;

e a = [(d+t)/2]; therefore both for d even and for d odd, we get a = (d +t)/2.

In order to compare the results of [LN] with ours, we want to put G. = G(«a(k)™;2,d, 1)
for a suitable value of k. For this we need

2(e+ 1)+t =alk)=d— 2k,

S0
d—t
e:T—k—l. (13.10)
Since t has the same parity of d, then e is an integer. Therefore, under the identification
of (T3.10),

Go=Glle+n+t—e2,d,1) = Gla(k):2,d,1).
Now according to [LN, proposition 6.8], whenever g = 0 we have
(1 _ (uv)aftfe)(l _ (uv)a*t*eJrl)(l _ (uv)2e+t+1)
(1 —uv)*(1 = (uv)?) '
Therefore, if we set a = (d+t)/2 and e = (d — t)/2 — k — 1, then we can write

HD(G,) =

d+t d—t
a—t—e:%—t—T—i—k—l—l:k—l—l, a—t—e+1=Fk+2,

2e+t+1=d—-t—-2-2k+t+1=d—-1-2k

and

-, (- (uv)" N (1 = (uv)*+2)(1 — (uw)d—172k) _
HD(G(a(k)™;2,d,1) = 1= a2l — (o)) =
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(1 — (uo)**2 — (uo)*+! 4 (u0)?+3)(1 — (uv)d—1-2%)
(1 —uv)?(1 — (uv)?) =

T - UU)2(11 — (uv)?) {1 — (u0) 1 — (w0 4 (ww) R
—(uv)* Y (uw)F 4 ()2 — (uv)d+2} . s

Now let us consider the formula of corollary [13.4.2| with g = 0. This gives

(1 + uv)((uv)d_k _ (uv)k‘H) + (uv)2k+3 _ (uv)d—l—Qk 41— (uv)d+2 _
(1 —uv)*(1 = (uv)?)

= = uv)2(11 e {(uv)d*k _ (uv)kJrl + (uv)dkarl _ (uv)k+2+

()% — ()T 41— ()2

which coincides with (13.11]).

Let us also consider the case g = 1. According to [LN2| theorem 6.7], we have the following
formula:

1—(u)? (L4 u)?(1+0)*(1 — (u) =027
1—uv (1= (uw)?(1 — (uv)?)

'(UU _ (uv)’y+2i)(1 o (uv)(df’y)/ZfiJrl)

HD(G;) = (1 +u)(1+v)

where:
e ~vis 1if dis odd and 2 if d is even;
e G, =Gi(2+ad,d, 1) =G(ajy1 —&;2+ ad,d, 1);
e ¢ is any non-negative integer; in particular we will be interested in a = 0;

e if a =0, by looking at the proof of [LN2) lemma 6.1], the critical values are of the form
a; =d — 2dy, with dy = [(d —1)/2] + 1 — 4, so by substituting we get that a; = 2i — 1
if d is odd, respectively a; = 2¢ if d is even. Then «;41 is equal to 2i 4+ 1, respectively
2i 4+ 2. So in both cases a1 = 2i + v and we set:

2i+y=aipi=ak)=d—-2k & i=
Therefore we have that if g = 1 and we set i := (d — 7)/2 — k, then

Gi=G2i+~v—¢2,d,1)=G(alk);2,d,1).
So

HD(G(a(k)";2,d,1)) = HD(G;) =
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— (uo)? (L w1+ )21 (u)")
1—wv (1 —wv)?(1 — (uv)?)

= D (1 ()1 - o )+ ()

— (14 u)(1+ )" (uw — () H)(1 — () =

et v+ ) - [(a0 — (o) — () + ()4 [L = ()]} =

_ (4wt
(1 —uv)*(1 = (uv)?)

+(14+u+v+uv)uv — (uv)k+2 — (uv)d_QIC + (uv)d_k+1 — (uv)k+1 + (uv)2k+2—|—

()" — (o)1)} =

B {1 —uv — (w)? + (w)? — (uv)d + (uv)d+1 + (uv)d+2 - (uv)d+3+

{1 —uv — (uv)? + (uw)?® — (w)® + (uv) + (wv) " — (uw) T3+

B (I+u)(140v)
(1 —uw)2(1 — (wv

Fuv — (uv)f 2 — (u0)4 % 4+ (w) T — ()P 4 ()2 4 (u0)?F — (w) T+ (u + o)
Juv — (uo) 2 — (u0) = 4 (w0)F — (u) P+ (u0) 2 4 ()R — ()4
+(uv)? — (u)**3 — (uv) TR 4 ()2 ()24

(UU)2k+3 + (uv)d7k+1 _ (uv)d+2} —

o (I+uw)(1+w)
- (- w)*(1 - (w)?)

+(u0) TR — ()P 4 (u0) P2 4 (w) 4 4 (w4 o) [uw — () — ()R
(

+(uv)d—k+1

5 {1 + (uv)?) _ (uv)d _ (uv)d+3 _ (uv)k+2 _ (uv)d—2k

o) ()2 o (o) — ()] — (o) — ()L

+(Uv)d_k+2 _ (uv)k+2 + (U,U)2k+3 + (uv)d—k+1} ) (1312)

Now let us consider the formula of corollary [[3:4.2] with g = 1. This gives:

(1+u)(1 +0)
(1 = wv)?(1 = (uv)?)

(14 uw)(1+0) + [1— (wo)d(1 + u0)(1 + uv2)} -

{0+ u0) (o)™ = (o)1) + ()2 — (wo)=2]

_ (04wl +v)
(1 —wuv)?(1 — (uwv

—(uv)k+2 + (uv)2k+2 _ (uv)d—Qk] . (1 futv+ uv)_|_

)2) {[(uv)d—k _ (U,U)k-i-l + (uv)d—k+l+

1= (w0))(1+ (u+ v)uw + (u0))} =

_ ’ Elut)zz§1_+(zz))2> {(w)d_k — (o) 4 (u0) T — ()2

+(u0) 2 — (u) 2 4 (u+ ) [(u) T = (uo) " 4 (uo) T = (w)F 2
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+(u) 22— (u0)472R) 4 () F — ()2 (u0) T2 = (u0) P 4 () P4
—(uw) T 11— (w0)? + (u + ) [uw — (u0) T + (uv)? — (uv)d+3} )

Then a direct check proves that this expression coincides with ((13.12)).

We observe that if ¢ = 0,1, then conditions (13.9) are automatically satisfied for all
positive integers d and for all integers k corresponding to actual critical values a(k) for (2,d, 1).
Therefore, we can restate corollary [13.4.2] as follows:

Corollary 13.5.1. For every genus g > 0 and for every pair d, k such that
d>49g—4 and 29—2<k<d/2,
the Hodge-Deligne polynomial of G(a(k)™;2,d,1) is given by

(L+wd(l+v)?
(1 —uv)?(1 — (uv)?)

: { [(1 + uv)((uww)TF — (uw)*h) + (uw)* 379 — (uv>g+d—1—2k} )

HD(G(a(k);2,d,1) =

(L4 w91+ 0) 4 [1— (u)2729](1 + u20)9(1 + uv2)9} .






Chapter 14

Case n=3, k=1

First of all, let us compute the critical values for the triple (3,d,1). By [BGMN] §2 and
proposition 4.2], the non-zero virtual critical values are all in the set

d
st. 0<E <k, 0<n' <n, nk#nk, d’eZ}ﬁ]O,[.

n'k — nk’

nd —n'd
n—=k
In our case, this gives

3d' —n'd / / / / / d
{n,_?’k,s-t-k—O,l, n'=1,2, n'#3k deZin|0z].

So we have the following 4 types of non-zero critical values:

o ifn/ =1,k =0,{3d' —dst. §<d <g};

o ifn =1k =1, {45000, 4= {§ - 3d'st. 0<d <

o ifn/ =2,k =0, {352}1n]0,4[= {3d' —dst. % < d <d};

o ifn' =2,k =1, {34=24}n]0, §[= {2d — 3d's.t. § <d' < F}.

Now it is easy to see that the first set coincides with the last one, so we write both as

2
2d — 3k s.t. d <k< 2 ; (14.1)
2 3
moreover, the second and the third set coincide, so we write both as:
d—3j d
{a(j) = I st 0 <j< 3}. (14.2)

Now:

d 3
2d-3k=-—-J j =2k — d;
d—3 5 2]4:)3 ;

moreover, by setting j := 2k —d and by using the conditions on k, we get exactly the conditions
on j. Therefore, the set ([14.1)) is contained in the set (14.2)). In general, it is strictly contained
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because we obtain only those values of j that are even or odd according to the parity of d. So
from now all the (virtual) critical values will be labeled as in (14.2)). Since we will also need
to cross the value d/2, we will consider also a(0) = d/2 as a critical value. We will see in the
following that every value «(j) is an actual critical value.

14.1 The moduli spaces G*(«(j);3,d, 1)
Let us fix any value

d—3j

5
and let us consider any object (E,V) € GT(a(4);3,d,1) (if j = 0, we will obtain the empty
set and the zero polynomial, so this will not give any problem for our computation). Since
n = 3, then all the (E,V)’s have length r of the filtration equal to 2 or 3 (it cannot be equal
to one, since this will imply that the coherent system is stable also at «.). So let us consider

d
a(j) = 0<i<3

the 2 different cases.

14.1.1 Caser =2

By applying lemma this gives a non-split exact sequence:

0= (Q1,W1) = (E,V) = (Q2,W2) = 0 (14.3)

with conditions (a)-(b). Then condition (a) implies that k3 = 0, but a priori ny can be either
equal to 1 or to 2.

(1) On the one hand, if ny = 2, then ng = 1; therefore, condition (b) implies that
d1 = d — j. Therefore, the previous conditions on j prove that both dy =d — j and de = j
are non-negative integers. Since r = 2, we must impose that both (Q1,W1) = (Q1,0) and
(Q2,W2) are a(j)-stable. Since there are no critical values for (2,d;,0) and (1,d2,1), this
simply means that we are considering all pairs (Q1,0), (Q2, W3) such that:

(QLWI) € G(27d_j70) = MS(27d_]> = G17 (Q27W2> S G<17], 1) = GQ.

Since HY, = H3, = 0, by proposition we get

dim Eth((QQ, WQ), (Ql, 0)) =09 =
= nlng(g — 1) — dmg + dgm + k2d1 — k:gm(g - 1) — klkg =
=2(g—1)—(d—j)+2j+(d—j)—2(g— 1) =25
Moreover, we can apply proposition for r = 2: both G; and G5 are smooth, so all the

connected components of G; x Go are irreducible. If d — j is odd we can work at the moduli
space level, otherwise we need to work at the Quot scheme level since there are no universal
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families on M*(2,d — j) for d — j even. In both cases, we get that for every critical value a(3)
we have a contribution to GT(a(5);3,d,1) by a projective bundle over G; x G5 with fibers
isomorphic to P%~1. So we get the polynomial:

. _ ’U,’l)2‘
Pl = DO (2 d — )L

g 9=
oeff (I 4+ ux)d(1+vx)z
Il —uv 20 (1 —2)(1 —uvx)

If 7 = 0, this is the zero polynomial, as it should be.

For the Hodge-Deligne polynomials of M#(2,d — j) for d — j even and odd, see chapter [8}
we recall that such polynomials depend only on the parity of d — j. We denote by p{EQd and
p{ﬁd the corresponding polynomials.

(2) On the other hand, if ny = 1, then na = 2. Moreover, condition (b) implies that
di = (d — j)/2, so this case is possible only if d — j is even. Then do = d —d; = (d + j)/2
and both d; and da are non-negative integers. We remark that the space G(«(j);2,ds,1) is
not empty if and only if a(j) < d2, but this condition is automatically satisfied by definition
of a(j).

Then we have to verify if a(j) is critical for (2,da, 1). According to chapter [13] this holds
if and only if a(j) = d2 — 2k for some 0 < k < d2/2. So this gives:

d—3j
5 =«
So «a(yj) is critical for (2,ds,1) if and only if 0 < j < d2/2 = (d + j)/4. The second
inequality holds if and only if j < d/3, which is exactly the condition we already put on j.

g
(j):dg—Qk:%—Qk & j=k

Therefore, for every admissible value of j (i.e. 0 < j < d/3) such that d — j is even, we have
that «(y) is critical for (2,ds, 1).

Since we are assuming that the Jordan-Holder filtration of (E,V') at a. has length 2, we
need to consider only those (Q2, Wa)’s that are strictly «(j)-stable (if they are only semistable,
then the filtration would have length 3), so we have to parametrize classes of non-split exten-
sions with (Q1,0) € J@=9)/2C' =: G and

(Qa2, W) € G(a(j)h;2,d2, 1) N G (a(§);2,da, 1) = G®(a(5); 2,d2, 1) := Ga.

Since HY, = H3, = 0, we get:

dim Eth((QQ, WQ), (Ql, 0)) =9y =
= nlng(g — 1) — ding + donq + kody — kgnl(g — 1) — ki1ko =
=2(g-1)-2% + 4 LI (g—1)=g—1+]. (14.4)
By proceeding as before, for every critical value «(j) such that d — j is even, we get a

contribution to G*(a(j);3,d, 1) by a projective bundle over G x Gy with fibers isomorphic
to P9=2+7 . For simplicity, we write



286

14. Case n=3, k=1

d—3j _d+j
r; ::HD(GQ):HD<G5< 233;2,‘2”,1». (14.5)

So this case gives a contribution of the form:

. — g—1+j
J=2d . (1 9(1 gl — (w0)7™ "
py =1 (L+u)(l+v) 1—wo

We will see in section 3 that if j = 0, then r; is equal to zero, so ps is the zero polynomial,
as it should be.

14.1.2 Caser =3

In this case the graded of (E,V) is necessarily made of 3 objects of the form (Qi,0),
(Q2,0), (Q3,W3) (a priori not necessarily in this order), where all the @);’s are line bundles.
The a(j)-slopes of these 3 objects must be equal to the a(j)-slope of (E, V), therefore we get

_d+a())

dy = dy = dy=dy = 1=

3 = 2
and
ds=d—2dy =j.

Therefore the case r = 3 is possible only if d — j is even. So in this case:

(Q1,0),(Q2,0) € JU=D2C =G =Gy, (Q3,W3) € G(1,5,1) = Gs.

Now the possible a(j)-canonical filtrations that we have to take into account are the fol-
lowing.

(1) If the length of the a(j)-canonical filtration is s = 3 = r, then the a(j)-Jordan-Hélder
filtration is unique and we have to parametrize objects (E,V) that sit in non-split exact
sequences of the form:

0— (E,0)— (E,V) = (Q3,W3) - 0

where E’ sits in a nontrivial extension of 2 line bundles Q1, Q2 of the same degree. Here
the object (@3, W3) must be the last object of the graded; if not, this would imply that we
have a quotient of the form (E,V) — (Q;,0) (for i = 1 or i = 2), but this contradicts the
a(j)T-stability of (E,V). Now

Hom ((Q3, W3), (Q2,0)) =0

because of lemma Then we have to consider two subcases as follows.

(1a) If we suppose that (Q1,0) % (Q2,0), then we can apply proposition in order
to parametrize all the corresponding (E,V)’s. In this case Hom((Q2,0), (Q1,0)) = 0, so the

invariant a can only assume the value
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a = dim Eth((QQ,O), (Ql,O)) =Cy = nlng(g - 1) —ding +don; =g — 1.

on the set U, = G X Ga . A1a. So we will get a projective bundle R, over U, with fibers
isomorphic to P?~! = P9=2. If we write Ey = (Fs,0) for any extension of Q2 by Q1, we get
that Ny = 2 and Dy = 2d; = d — j. Moreover, EXt2((Q3,W3), (E2,0)) = 0 because kg = 1
and also Hom(—, —) = 0; therefore we get that the invariant b can assume only the value:

b =dim Eth((Qg, Wg), (EQ, 0)) = Ngng(g — 1) — Dong + dsNo + ks Doy — k‘3NQ(g — 1) =

=2(g—1)— Dy +2ds+ Dy — 2(g — 1) = 2d3 = 2j.

Moreover, the invariant ¢ can only assume the value:

C = dim Eth((Qg, Wg), (Ql, 0)) = 031 = nlng(g — 1) — d1n3 + d3n1 + k:gdl — k?g’rll (g — 1) =

:(g—l)—d1+d3+d1—(g—1):dgzj.

Therefore, we get that Uy . = P, x G3 and we get a bundle Ry . over Uy, . with fibers
isomorphic to PP=1 \ P¢=! = P%~1 { P/~L. The bundle R, b parametrizes all the (E,V)’s
in GT(a(j);3,d,1) with unique «(j)-Jordan-Hélder filtration and Q1 % Q2. We recall that
G1 = Gy = J@/2C and G3 = G(1,4,1); then we get the Hodge-Deligne polynomial

pé’;gd = HD(Rup.) = (HD(PQj_l) _ H’D(Pj—l))HD(Gg)HD(Ra) =

_ (uv)? — (uv)? - coeff (1 +ux)9(1 + vz)9a7
1—wuv 0 (1—2z)(1 —uvx)
_ (uv)? — (uv)? - cooff (14 ux)9(1 + vr)9x ™ 11— (uv)9—1
1—wuv 0 (1—-2)(1 —uvx) 1 —wuv
_ (w)! — (uv)¥ - cooff (14 ux)9(1 + vx)9ax™
(1 —uw)? 20 (1 —2)(1 —uvr)

(1= (uw)? (1 +w)?(1 +v)7 —1).

- HD(PY?) - HD(G1 x G2\ Arg) =

HD(G1)(HD(Gy) — 1) =

(1+w)I(1 +v)?-

Also in this case, if j = 0, then we get the zero polynomial.

(1b) If we suppose that (Q1,0) ~ (Q2,0), then we can apply proposition in order to
parametrize all the corresponding (E,V')’s. In this case we need to compute the invariants:

a = dim Ext'((Q2,0),(Q1,0) =Co1 +1 =g

and

b = dim Ext!((Q3, W3), (Q1,0)) = C31 = 7.
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Therefore, we get a projective bundle R, over G with fibers isomorphic to P9~!; the
(E,V)’s we are interested in are parametrized by a bundle R, over R, x G3 with fibers
isomorphic to C/=1 x PJ~1. Therefore, we get the polynomial:

P2 = HD(G1)HD(G3)HD(C YHD(PI YHD(PI ') =
jo1l— (uv)? 1= (w)?

(wv) =

1—uv 1—uv

_ g g (1 +ux)9(1 + vz)Iz™
=(14+u)?(1+v) C?c%ff (1—2z)(1 — uvx)
(uv)jfl _ (uv)2j71

B 09 D91 — (o)) coe (1 4+ uz)9(1 + vz)9z~7
B (1 —uv)? (14w +v)7(1 = (w0)’) IOH (1—2)(1 —uvz)

If j = 0, then p}=>? = 0.

(2) If the length of the a(j)-canonical filtration is s = 2, by using the same argument used
before we get that the only possible a(j)-canonical filtration of (E, V) is given by

0C (leo) D (QZ?O) - (E7V>
with (E,V)/((Q1,0) ® (Q2,0)) = (Q3, W3). We have to consider 2 subcases as follows.

(2a) Let us suppose that Q1 % Q2; since Q1 and Q9 are of the same type, then we can
use proposition in order to have a global parametrization. In this case the invariant a
can assume only the value

a = dim Ext! ((Q3,W3), (Q1,0)) = C3; =

=ning(g — 1) —dinz +dsny + ksdy —ksni(g—1) =ds =3

and analogously also b can only assume the value b = j. Therefore the scheme U} coincides
with G7 x G35 and Ub2 = (G2 x G3. Since all the G;’s are irreducible, then we get that
Uapi,j = G1 X G2 x G3. So the only significant case in proposition is case (d). Using the
last part of that proposition, we get that the (E,V)’s we are interested in are parametrized
by a scheme M /Zs and from the point of view of Hodge-Deligne polynomials we can assume
that M is the scheme

(Gl x Gg A12) x (3 X Pi—1 % ijl,

where Zs acts by:

(QMQ% (Q&Wz),m,uz) > <Q27Q1, (Q3,W3)?u2,m)-

Let us write M’ = G1 x PI—1 = J(@=9)/2C x Pi—1; then

1 — (uv)?
1—wuv

HD(M')(u,v) = (1 +u)?(1+0)?.

Therefore we can compute:
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A= ’HD((M’ x M’)/ZQ) (u,v) =

2

— (uv)?)? — (un)%

. ((HD(M’)(u, )2 + HD(M')(—u?, _U2)) -

1
2

and

B = ”HD((AH x PIL IPj_l)/Zg> — HD(Arp) -HD((PJ‘—l x Pj_l)/Zg) -

1 (1= (w))? 1 (uw)*
=2<1+u>9<1+”>g( A—wp 1—<uv>2>'

Finally, we can compute:

_ g 97
pl=2" = HD(M/Zs) = HD(G3) - (A~ B) = %coeff (L+uz)9(1 +vz)ia™?

0 (1—2)(1 —uvx)

| [<1 — (uv))?

e (o)

1— (uww)¥

+ m(u )91 — )9 — (1 +u)I(1+ v)g)} .

. . . j=2d
Also in this case, if j =0, we get pl —>* = 0.

(2b) If @1 ~ @2, then the corresponding (E,V)’s are parametrized using proposition
[7.2.3] Also in this case, there is only one value for the invariant a, namely a = j as in
(2a). Moreover, there is a single index i, that therefore we ignore. So the (E,V)’s we are
interested in are parametrized by a grassmannian Grass(2, R,) where R, is a vector bundle

over U, = G1 x G3 = J4=9/2C x €9 with fibers isomorphic to C/. So we get:

P! = HD(Grass(2, Ry)) = HD(Grass(2, ) ) - HD(T49)/2C) - HD(CV) =

(1 — (wv)’~H (1 — (uv)?) p )9 coe (1 +ux)9(1 +vx)Ix™
A=) (1 = (uoyy) W ) e e s )

Also in this case, we get that if j = 0, then pg = 0.

By putting everything together, we get that if 0 < j < d/3,

e if d — jis odd, then HD(G" (a(j);3,d,1)) = p{;‘ézd;
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e if d — j is even, then

HD(GF (a(5);3,d,1)) = pi + p3 + p5 +pi + S + .
where e stands for j =2 d.

Both expressions are actually zero if j = 0.

14.2 The moduli spaces G~ («(j);3,d, 1)

Also in this case the length r of the filtration of any (E, V) € G~ («(j);3,d, 1) can only be
equal to 2 or 3. So let us consider the 2 different cases.

14.2.1 Caser =2

In this case lemma implies that necessarily (E, V') sits in a non-split exact sequence

0= (Q1,W1) = (B,V) = (Qa2, W2) = 0 (14.6)

with k‘l =1 and k?z = 0.

(1) On the one hand, if ny = 1, then ny = 2; therefore, condition (b’) implies that
do = d — j. Therefore, the previous conditions on j prove that both do = d — j and d; = j are
non-negative integers. Since r = 2, we must impose that both (Q1, W) and (Q2, W2) = (Q2,0)
are a(j)-stable. Since there are no critical values for (1,d;, 1) and (2, d2,0), this simply means
that we are considering all pairs (Q1, W1), (Q2,0) such that:

(Q1,W1) € G(a(1,5,1) = G1, (Q2,0) € G(2,d— j,0) = M*(2,d — j) =: Go.

As before, HY; = H3, = 0, so

dim Ext'((Q2,0), (Q1,W1)) = Ca1 =
=nina(g — 1) — ding + dany =
=2(9g—1)—2j+(d—j)=29—2+d—3j.

Now we can apply proposition for r = 2. So for every critical value a(j) we get a
contribution to G~ («(5);3,d, 1) by a projective bundle over G; x Go with fibers isomorphic
to P29-3+4=3j S0 we get the polynomial:

| L (o) (14 u)9(1+ va)a
1= HD(M*(2,d — i
q = HD(M*(2,d - j)) T —w T (-2 — wx)
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According to the notation used in the previous section, we denote by q{_ﬁd and q{EQd the
polynomial ¢] according to the parity of d — j.

(2) On the other hand, if ny = 2, then na = 1. Moreover, condition (b) implies that
dy = (d—j)/2, so this case is possible only if d — j is even. Then dy = d—ds = (d+7)/2 and
both d; and do are positive integers. As in the previous section, we get that the numerical
conditions on j imply that the space G(«(7);2, (d+ j)/2,1) is not empty; moreover, a(j) is a
critical value for (2,(d 4 j)/2,1). Since we are assuming that the Jordan-Holder filtration of
(E, V) at a. has length 2, we need to consider only those (Q;, W;)’s that are strictly a(j)-stable.
Therefore, in this case we have to parametrize extensions with (Q2,0) € J(¢/2C =: G5 and

(Q1,W1) € G(a(j)t;2,d1,1) N G (a(j);2,d1,1) = G®(a(5); 2,d1, 1) =: Ga.

Since HY, = H3, = 0, we get:

dim Ext'((Q2,0), (Q1,W1)) = Ca1 = nina(g — 1) — ding + dany =
=2(9-1) -Gl 4258 =292+ 5. (14.7)
So for every critical value () such that d—j is even, we get a contribution to G~ (a(j); 3,d, 1)
by a projective bundle over J(¢=)/2C'xG®(a(5)*; 2, dy, 1) with fibers isomorphic to P29—3+(d=37)/2,

For simplicity, we use the polynomial r; defined in (14.5)). So this case gives a contribution of
the form:

2g—2+4(d—3j5)/2
g1 = (uv)% ( ])/.

J=2d .0 9(1
o= (T+u)!(1+0) 1 — w0

14.2.2 Caser =3

In this case the graded of (E,V) is necessarily made of 3 objects of the form (@1, W1),
(Q2,0), (Q3,0) (a priori not necessarily in this order), where all the @;’s are line bundles. The
a(j)-slopes of these 3 objects must be equal to the «(j)-slope of (E, V), therefore we get

d+ a(j) d2:d3:d_j

dy = d3 = 3 = 5

and

di =d—2dy = j.

Therefore the case r = 3 is possible only if d — j is even. So in this case:

(Q1.W1) € G(1,5,1) = G1,  (Q2,0),(Q3,0) € JD/2C =: Gy = Gs.

Now the possible «(j)-canonical filtrations that we have to take into account are the fol-
lowing.
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(1) If the length of the a(j)-canonical filtration is s = 3 = r, then the a(j)-Jordan-Hélder
filtration is unique and we have to parametrize all the (E,V)’s that sit in non-split exact
sequences of the form:

0— (Q1,W1) = (E,V) = (E",0) =0

where E” sits in a nontrivial extension of 2 line bundles Q2, @3 of the same degree. Here
the object (Q1, W1) must be the first object of the graded; if not, this would contradict the
a(g)~-stability of (E, V). Now

Hom ((Q2,0), (Q1,W1)) =0

by lemma Then we have to consider two subcases as follows.

(1a) If we suppose that (Q2,0) % (Q3,0), then we can apply proposition in order
to parametrize all the corresponding (E,V)’s. In this case Hom((Q3,0), (Q2,0)) = 0, so the

invariant a can only assume the value

a = dim Eth((Qg,()), (QQ,O)) =C3y=non3(g—1) —donz +dsny =g — 1

on the set U, = G2 X G3 \ Agz. In this case we will get a projective bundle R, over U,, with
fibers isomorphic to P4~ If we write E” = (E”,0) for any extension of Q3 by Q2 we get that
N" =2 and D" = 2dy = d — j. Moreover, Ext?>((E",0),(Q1,W1)) = 0 because K" = 0 and
also Hom(—, —) = 0; therefore we get that the invariant b can assume only the value:

b = dim Ext'((E”,0),(Q1,W1)) = miN"(g — 1) —=dyN" +d"ny =
=2(g—1)—2j+d—j=29g—2+d-—3j.

Moreover, the invariant ¢ can only assume the value:

c = dim Eth((Qg, O), (Ql, Wl)) =C3 = nlng(g - 1) —dinz +dgny =
o d—j d—3j
=g—1-— —=g-1 .
g J+ 5 g + 5
Therefore, we get that U, ;. = G1 X R,; moreover, we get a bundle R, . over Uy . with
fibers isomorphic to PV=1 \ Pe~1 = P29-3+d=3)  P9-2+(d=31)/2 We recall that G; = G(1,4,1)

and Gy = G3 = J(@=9)/2 50 we get the Hodge-Deligne polynomial

ngQd — HD(Ra,b,c) — (HD(]P)2973+d73j) _ HD(P9*2+(d73J’)/2>>HD(Gl)%D(Ra) _

 (ww)9 T ET82 () 29— 2455 coe (14 ux)9(1 + vx)9x™
N 1 —uw 20 (1 —2)(1 —uvx)

HD(PI™2) - HD(Gy x G3 ~ Ag3) =
 (ww)9TIHE=32 () 20— 24 d=8) cooff (14 ux)9(1 + vx)dx™
N 1—wuv 20 (1 —2)(1 —uvx)
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’WHD(GQ)(HD(GQ) —-1)=
w)9~1H(d=35)/2 _ (4,4))29—2+d—3j wa -
= (uv)? (Jl _ UU()Q )7 J 'CO:E% (1 ‘(|‘1 _)xg)((ll—t uv);) J(l +u)9(1 + v)?-

(1= (w)? (A +u)? (L +v)7 = 1).

(1b) If we suppose that (Q2,0) ~ (Q3,0), then we can apply proposition in order to
parametrize all the corresponding (E,V)’s. In this case we need to compute the invariants:

a = dim Ext'((Q3,0),(Q2,0) =Cs2+1=g

and

d—3j

5

Therefore, we get a projective bundle R, over G with fibers isomorphic to P9~1; the
(E,V)’s we are interested in are parametrized by a bundle R, over P, x G3 with fibers
isomorphic to CI~2+(d=31)/2 y pg—2+(d=37)/2  Therefore, we get the polynomial:

b = dim Eth((Qg,O), (Ql, Wl)) =Cy1=9g—1+

@, 2 := HD(G1)HD(Go)HD(CI~HH1=30)/2) 3 p(p9—2H(1=30)/2) p(P9—1) =

= (14 u)?(1 + v)? coeff (1 +uz)I(1 + vx)z™

9—2+(d=3j)/2,
x (1—2)(1 —uvx) (uv)

1 — (u)9~24Hd=30)/2 1 _ (yp)9

1—wv 1—wuv

(uv)g—2+(d—3j)/2 _ (uv)29_3+d_3j

- e (1w (1 +0)7(1 = (wn)?)

9 97
- cooff I+ uz)d(1 +vx)iz
0 (1—-2)(1 —uvx)

(2) If the length of the «(j)-canonical filtration is s = 2, by using the same argument used
before we get that the only possible canonical filtration of (E, V) is given by

0C(Q,W1)C(E,V)
with (E,V)/(Q1,W1) = (Q2,0) @ (Q3,0). We have to consider 2 subcases as follows.
(2a) Let us suppose that Qo % Qs3; since Q2 and Q3 are of the same type, then we can

use proposition in order to have a global parametrization. In this case the invariant a
can assume only the value

a = dim Ext! ((Q2,0),(Q1,W7)) =Co =

d—3j
2

. o d—7yg
:nan(g—l)—dlng—l—dgnl:g—l—j—l—Tj:g—l—i-
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and analogously also b = g — 1 + (d — 335)/2. Therefore U? = G1 x G5 and Ul;q’ = G x Gs.
Since both G1 and G2 = G73 are irreducible, then we get that Uy, j = G1 X G2 X G3. So the
only significant case in proposition is case (d). Using the last part of that proposition,
we get that the (E,V)’s we are interested in are parametrized by a scheme M /Zsy; from the
point of view of Hodge-Deligne polynomials we can assume that M is the scheme

Gy X (Ga x G3 N Agg) X P9—2+(d=35)/2 [[Dg—2+(d—3j)/2’

where Zs acts by:
((Qla W1)7 Q27 Q3a K2, /Lg) = ((Qla Wl)> Q37 Q27 H3, ,UQ) .
Let us write M’ = Go x P9=2+(d=31)/2 — j(d=)/2C x P9—2+(d=3/)/2 then

HD(M')(u,v) = (14+u)9(1+v)9.

1—wv

Therefore we can compute:
A= HD((M' x M')/25) (u,v) = %((’HD(M’)(U,U))Q FHDO) (i, %)) =

(14 u)*(1+v)*+

1 (1 o (uv)g—1+(d—3j)/2)2
(1 —uv)?
1— (uv)Zg—2+d—3j

1 — (uv)?

(1—u?)9(1— v2)9>
and
B = ”HD(( Agy x PI~2+(@=31)/2 o po=2+(d=3))/2) /Zz> -

= HD(An) .HD<([pg—2+(d—3j)/2 X [pg—2+(d—3j)/2)/Z2> =

1 1 — (u0)9—1H(d=30)/2)2 | _ (y0)29—2+d—3]
= 51+ u)?(1+ ) <( ( (B_uv)Q L <1 _)<7w)2 )

Finally, we can compute:

7 = HD(M /) = HD(G) (A~ B) = geogll T

(1 _ (uv)g_1+(d_3j)/2)2
(1 —uv)?

(I+u)f(1+ v)9<(1 +u)?(14v)? — 1)+

1 — (uw)29-2+d=3]
1 — (uv)?
(2b) If Q2 ~ Q3, then the corresponding (E, V)’s are parametrized using proposition[7.1.3]

Also in this case, there is only one value for the invariant a, namely a = g — 14 (d — 3j5)/2 as

. (s )= @ wp o))
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in (2a). Moreover, there is a single index ¢, that therefore we ignore. So the (E,V)’s we are

interested in are parametrized by a grassmannian Grass(2, R,) where R, is a vector bundle
over Gy x Gy = CY) x J@=9/2C with fibers isomorphic to Co~1+d=39)/2 §g we get:

qézﬂ := HD(Grass(2, R,)) =
=HD (Grass(2,g —1+(d- 3j)/2)) - HD(JUD20) . 1D(CV)) =

— 9—2+(d—37)/2y(1 — g—1+(d—35)/2 g 9=
_ (1— (uv) )(1 = (uv) )(1+u)9(1+v)gco%>ff (14 ux)?(1+vzx)iz

(1 —uv)(1 — (uwv)?) x (1 —2)(1 —uvx)

By putting everything together we get 2 cases:
e if d — j is 0dd, then HD(G (a(4);3,d, 1)) = ¢/ 72

e if d — j is even, then

HD(G™ («(4);3,d,1)) =qf + a5 + ¢5 + q§ + a5 + 46

where e stands for j =5 d.

14.3 Crossing a critical value «(j)

14.3.1 d—jodd, 0<j<d/3

As we said before, if d — j is odd, then the only significant contribution is from p; and ¢,
so we get:

HD(j,0dd) := HD(G(a(j)";3,d,1)) — HD(G(a(j)*;3,d, 1)) = g 7> — pJ7>¢ =

B s (uv)¥ — (uv)?9—2+d=3J (1 +uz)9(1 +vx)z™d
= HD(M?(2,0dd)) 1 —wuv ch)c%ff (1—2)(1 —uvz)
(w14 v)9(1 4 ) (1 + uv?)? — (uwv)9(1 + u)29(1 + 0)29‘

- (1 —w)*(1 = (w)?)

() — (up)=-5) cop (L0 U v)%0

20 (1—2)(1 —uvx) (14.8)

We remark that

HD(j,0dd) = —

T+ w)a(1 +v)s

where C), is defined in [M proposition 6.3].
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14.3.2 d—jeven, 0<j<d/3

If d — j is even, we compute the following quantities:

q{Ezd _ pjl'zgd _
25 _ 2g—2+d—3j g go—ij
— HD(M?(2, even)) (uv)™ — (uv) coofp (L u@)?(1 4 va)oa™l
1 —wv 20 (1 —2)(1 — uvz)

(UU)QJ' _ (uv)29—2+d—3j
~ 21— uw)2(1— (w)?) (20 + w701+ 001+ w0 (1 +w?)+

—(1+u)?9 (1 + )21 + 2099 —u20?) — (1 —u?)9(1 — v?)9(1 — uv)2>-

9 97
- cooff (1 +uz)I(1 +vz)9z~/
0 (1—2)(1 —uvx)

jEQd _ jEQd

5} py =1 (L+u)9(1+v)d ()™ — (w2

1—wv

We recall that

d—35 _d+j
7‘] = HD (GS( 2 372)—;];1>> :HD (Gs(d/_2])27d/71))7

where d' := %. So according to corollary|(13.3.2|with k substituted by j and d by d’ = (d+j)/2
(so that g +d — 1 — 2k is replaced by g — 1 + (d — 35)/2), we get:

ry = (1+u)(1 +v)? cooff (14 ux)9(1 + vx)9x™7 [ (uv)’ (up)9t1H(d=37)/24 B

1 —uw 0 (1—2)(1 —uvx) 1—(w) 'z 1-—(uw)’x

This can be done since k = 7 > 0, so d’ — 2j is less or equal than d’, which is the last
critical value for (2,d’,1). We recall that for j = 0 we will get r; = 0, even if this is not a priori
obvious from the way it is written here, see remark Also in this case, we will use this
complicated notation simply because it will help in order to sum all the various contributions
given by crossings the various critical values. Therefore for every 0 < j < d/3 such that d — j
is even, we have:

(1+u)?9(1 +v)%9

i=ad _ j=ad _ —14j 29—2+(d—35) /2
G= = =y ((uv)g i ()29~ 2HA=39)/ ) :
- cooff (1 4+ ux)9(1 + vx)9x ™ (wo)) (uw)9+1+(d=37)/24 -
0% (1—2)(1 —uvx) 1— (uwv)~lz 1— (uv)?x B

= (P b o 0+ )

(1 + uz)?(1 + vr)9a [ (uv)? () H1+(d=3)/2 ]
1—

-coeft (uwv)~1z 1— (uwv)?z

x (1—2)(1 —uvx)
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Moreover, we can compute:

(uv)9 =1+ (E30D/2 — (4)207 24730 — ()T 4 (uw)¥
(1 —uw)?

j=2d j=od
q§2 _péz _

B (1 +ux)9(1+ vx)gzv_j.
(1= @) DA+ w)? (L 0)? = D+ uf(1+0)f coefl s m P

—0d (uv)g_2+(d_3j)/2 _ (uv)29—3+d—3j _ (uv)j_l + (uv)Qj—l

Jj=2d Jj
U ~h (1 —uv)?
g p p (I +ux)d(1+ v:c)gw_j_
(T+u)(1+0v)9(1— (uv) )c%}ff A—0)(1 —uwn)
_ _ w02 — (qp)29-2+d—3
T [< 2t (JU)Q (a1 -2 — (1wt 0))+

()9 1HA=39)/22 _ (1 _ (y)d)2
(1= (w) (Uw))z U= WOl (1 4 u)o(1 -+ 0y

'<(1 +u)I(1+ )9 — 1)] - cocff a J(rlu_x);’)((lltzai})z;v‘f _

1 [ (uv)? — (up)29-2+d=3j

T2 [ 1 — (uv)?

(uwv)29-2+4=31 _ 9(yp)9=1+(d=30)/2 _ ()2 4 2(up)d
(1 —uv)?

(1= w7 =) = (1 +w?(1+0)7)+

+ (14 u)?(1 +v)9-

(1 +uz)9(1 +vz)?
.((1 Fu)I(1+ ) — 1)] L gt
qézgd _pgjzgd _
(1 — (w)d=2HE=30)/2) (1 — (wo)9=1H4=3)/2) — (1 — (wo)?~1)(1 = (ww)?)
(1 —uv)(1 — (uwv)?) '

g g (1 + ux)9(1 + va)9z™d _
(1+u)(1+v) cc;(gﬁ 1 —z)(1 —wvz)

1 +uz)9(1 + vx)Iz=I
(1 —-2)(1 —uvx)

_(uv)972+(d73j)/2 + (uv)2973+d73j} . cogff (

All these terms coincide with analogous terms in the proof of [M] proposition 6.4], except
for the extra multiplicative factor in that case given by —(1 + w)9(1 4 v)9. In particular,

. q{;'_éQd - p{ﬁd is associated to e(X, ) — e(X; ) in the proof of proposition 6.4;
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j=ad o j=od

° g Py 2% is associated to e(X;") — e(X; ) in the proof of proposition 6.4;
° qugd - ngQd is associated to e(X;") — e(X;) in the proof of proposition 6.4 for all
i=3,--.6.

All these identifications are obtained by setting d; := d, ds := 0, n := d — j, so that the
invariants N; and Na (see the notation before proposition 6.3 in [M]) are given by:

Ni=di—dy—n=d—(d—j) =1/,
d—3j
5

Then we can simply use exactly the same computations of [M], proof of proposition 6.4

L
Ngzg—l—dl—HSg:g—l—d—i—BTj:g—1+

in order to compute the next quantities. We do anyway all the computations following that
paper, since some of the intermediate passages are missing; moreover, we will need to do twice
almost all the same computation (see the next section), so we will do it once here and then
simply state the differences with the second computation. The only difference with [M] is that
all signs are changed and that in [M] there is an additional multiplicative term (1+u)9(1+wv)Y
(the sign is given by the fact that we are crossing critical values right-to-left, while in [M] the
crossing is done left-to-right; the extra multiplicative term is because on holomorphic triples
we have an extra contribution from a Jacobian). For simplicity, we will still use the notation

N for j and Ny for g — 1+ %. For every 0 < j < d/3 such that d — j is even we define:

HD(j, even) := HD(G(a(j) ;3,d,1)) — HD(G(a(§)";3,d,1)) =

= > @ =p7) = coeff (

i=1, .6

1+ ux)9(1 4 vw)dzrI _
(1 —2z)(1 —uvx)

(uv)2N1 — (uv)2N2
. {2(1 —w)?(1 — (w)?)

—(1+ ) (1 +v)¥ (1 + 2(uwv)?t — (ww)?) — (1 —u?)9(1 — v?)9(1 — uv)?] +

wo)M — (uv)N2 uv)M wo) Ve t2y
+( )(1 - ugj)z) (wo)? (1 + w01+ 0) 1 —( (u)v)lm B i —)(uv)%c a

(w0) ™2 — (uv)?N2 — (u)N1 + (u)2M |
(1 —uv)?

[+ w1+ )% = (14w (1 + )] [1 = (w)? ]+

(UU)N2_1 - (uv)2N2—1 o (uv)Nl_l 4 (uv)2N1—1

201+ w)(1 + v)(1 + uo)d (1 + uv?)I+

1]+

+

_l’_

(1+u)?(1+ )1 = (u0)?]+

(1 —uv)?
uv)2N — (yp)2N2
3 [ (=)0 = ) — (L) (1 4 0)7) +

(uv)2N2 — 2(uv) N2 — (uw)®M 4 2(uv)™M
(1 —uv)?

(14w (1 +0)% — (1+u)?(1 +v)9)
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(14 u)9(1 + )9

(u)M + (uv)M =1 — (uw)?N1 = — () N2 — (uw)V2 4 (uw)?V2 L }
0 w)(i— (w)?)

9 97
— coeff (1 4+ ux)I(1l+vx)x
0 (1—2z)(1 —uvx)

+[(uv)?™ — (wv)* 2 HD? (N1, N) }

Al(wo)™ — ()M HD (N1, No)+

where
uv)I (1 + u)29(1 4 v)%9 uv)M uv) N2y
le(Nl,NQ) = ( ) ((1—+; UJ)U)Q( + ) . . _( (u/)l))_lx _ ](- _)(uv)2x — 1|+
— (uv)9~1
[0 ) (] S
— (uv)9 u)%9 v)%9 — u)d v)J
_(uv)l(l—i-u)g(l—i-v)gzl —(UU;Q (+u) (1+(1)_uv()12jL Pary +

L (@) (A + w1 +v)f
(1 —wv)(1 — (uv)?)
_ (w0)9 N (1 +w)*(1 + )% (uv)™ (uv)N 22
B (1 —uw)? ‘ [1 —(w) 'z 11— (w)’x
(14 u)29(1 + v)29 (uv)I~1
(1 —uv)? N

1]+

(1 tlu)_gilv;”)g <_(uv)gl — (u)7H(1 = (w)?) +

_ () A+ w)*9 (1 + )% (uv)™ (uv) V22
B (1 —uv)? ' [1 —(w)lz  1-— (uv)%}

1+ (uv)~t
14 uv

and

T+ u)9(1 4 v)9(1 4+ u?v)9(1 + uv?)9
(1 = uv)*(1 = (uwv)?)

L+ w)*(1+0)* (1 +2(uv)™ — (wv)?) (1 —u?)I(1—v?)

HD?*(Ny, No) = HD? := (

- 21 — w0)2(1 — (w0)?) T = (wy?)
N [(1+u)?9(1 +v)% — ((ij—zq))jgl +v)9)(1 — (uv)g_1)+
(uwo) M1+ u)?(1+0)9(1 = (w0)?) = (1 —u?)9(1 —0?)?
+ (1 — ) 21— (w)?)
1+uw)9(1+0v)  (1+uw)?9(1+v)%9 — (1+u)(1+v)9
T —(w)?) 21— uv)? +

(uv) 11+ u)9(1 +v)9) B
(1 —uv)(1 — (uv)?)
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(w14 v)9(1 4 uo)I(1 + uv?)?
B (1 —w)*(1 = (uv)?)
(14 u)29(1 +v)% 1+ 2(uv)9t! — (uv)? _ 1
e (R ) O 0= 5)
1-— _li + (uv) "Y1 — (uv)9)+

(1 - uv)?

Ao (FZ 0

B 1 1 (uv) 1 B
20— (w)?) 20 —w)? u—wm—wwﬂ‘

(1 + w1+ 0)9(1 + )9 (1 + uw?)? (1+u)29(1+v)29'
- (1 —wuv)*(1 = (uv)?) (1 — uv)?
—1- 2(uv)9t + (uv)? + 1 — (uv)? — 2(uv)971 + 2(uw)9+! N
2(1 = (uw)?)

(14+u)9(1+v)9 B T
50 — w21 + ) (2((uwv) ™t = 1)(1 +uv) — (1 — wv) + (1 +wv) — 2(uv) ') =

(4wl 4 0)9(1 + uP) (1 + w?)d — (wo)9 (14w (1 +0)%9
N (1 = uv)?(1 = (w)?) -
(T4 w14 v)9(1 + u?0) (1 + uw?)9 — (uw)9(1 4+ uw)*(1 +v)%
- (1 = u0)?(1 = (w)?)
B (uv)9=H(1 — ww)(1 + u)?9(1 + v)¥
(1 = uv)?(1 = (w)?)

So we get that

. _ g g (1 + uz)I (1 + va)9z
HD(j even) = (14 u)? (1 +v)7 coeft —a— v a— " 5—

1™ — (un) V2 (o) '+ w)f(1+v)¢ [ (w)™ ()2
{ s — oy P = e
N1 ()22 (1 + w?0)9(1 + uv?)? — (uv)9(1 + u)9(1 + v)?
+[(UU) ( ) ] [ (1 _ uv)2(1 _ (’U,’U)Q)
(uv)9= (1 4+ w)9(1 + 0)9} } _

(1 —w)?(1 +wv)
= 9 g (1 +uz)9(1 + vx)Iz™d
=(1+u)9(1+wv) cozgff 1)1~ uoa) )
. {(uv)g—l(l +u)9(1 +v)? ( (uwv)?M - (wv) N1+ N2+2y, - (uw)M1+N: N
(1 - uv)? 1= (uv)~ta 1 — (w)?x 1— (uwv)~lz
(’LLU)2N2+21’ (uv)2N1 _ (UU)2N2> .

1— (uwv)?x 14+ uv

D12V (py2Ney . (L @) (14 u?)? — (wo)?(1 + w)o(L+0)7)
)™ — (u)?Ve e }
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_ 9 g (1 +ux)?(1 4 vx)9z™)
= (14w (Lt o) eoefl “—grv g —

. {[(uv)ZNl _ (uv)2N2] _ (1 4+ u?0)9(1 + uv?)9 — (uv)9(1 + u)9(1 + v)9
(1 —uv)2(1 — (uv)?)

(uv)? ! (1 + w)?(1 + v)? ((uv)”““(l + (w)7z) | (o) (1+ (wo)’s)
(1 —uv)?(1 4 o) 1— (w) 1z 1— (uwv)?z

(uo)M+N2(1 4 wv)(1 — uvz?)
(1 — (uv)1z)(1 — (uv)2r) >} . (14.9)

14.3.3 The polynomials for G~ («a(k);3,d,1)

In the following chapter we will also need the Hodge-Deligne polynomial of the moduli
space G~ (a(k);3,d,1). This polynomial will have 2 different expressions according to d — k

odd or even.

Lemma 14.3.1. If d — k is odd we have

HD(G (a(k); 3,d, 1)) = ¢72% =
1 — (uv)?9—2+d=3k (14 uz)9(1 4 vz)z™"

ff
1 —uv 0 (1—2)(1 —uvx)

_ (1 +ux)?(1 + vx)?
=(1+u)f9(1+v) C(;%ff (1—2z)(1 — uvz)

1+ u?v)9(1 4 uv?)9 — (uww)9(1 + u)9(1 + v)9
(1 —uv)?(1 = (uv)?) '

— HD(M?(2, odd))

. [ —k (uv)2972+d73kx7k]_

If d — k is even, then

HD(G™ (a(k);3,d, 1)) = Z gi=2
i=1,-,6

Now we denote by Ni = k and Ny = g — 1+ (d — 3k)/2 and we write:

k=od _ 1-— (UU)NQ (uv)g—l (1 + u)2g<1 4 0)29.

2 (1 —uv)?
oot e e [T~ s =
= 1(1__(12’3;2(%)9—1(1 +u)? (1 + v)%-
oot e e [y~ + s ]
1 — (uw)9~t

T (L4 (140



302 14. Case n=3, k=1

coeff (1 +ux)I(1 + vx)z—k . (wo)™  (uw)Net2g
0 (1—2)(1 —uvx) 1—(w) lz 11— (uw)?x

Therefore,

ux vz)9xk
. { 1-— (uv)2N2
2(1 — ww)?(1 — (uv)?)
—(1+ ) (1 +v)¥ (1 + 2(uwv)?t! — (wv)?) — (1 —u?)(1 — v?)9(1 — uv)?] +
1 — (uv)2 (uv)™M (uv)N2+2y
(1 —uw)? 1—(w) "z 1-—(u)x
(uv)N2 — (uv)2N2
(1 —uv)?
wo N2l (yp)2Na—1
+( ) (1u(v)2) (14 uw)? (14 v)9[1 — (uwv)’]+
11— (uv)?N2
+§ 1 — (uv)?
(uv)* V2 — 2(uv)N2 + 1
(1 —uw)?

201+ w)(1 +v)(1 + uPo)d(1 + uv?)+

(uv)? (1 + w)® (1 +v)* — 1|+

+

(T H+ w1 +0)% — (1 +u)?(1+0)9] - [1— (uw)? ]+

((1 — u2)9(1 — U2)g —(1+u)I(1+ U)g) +

((1 + u)29(1 + U)2g —(1+u)9(1+ U)g)] +

gl = (uv)N2 — (uv)N2=1 + (uw)2N2—1
(1 —uv)(1 — (uv)?)

1— (uww)9~! (uv)™M (uv)Net+2g
+ (1 —uv)? L+ ¥ (1 +0)¥ [1 —(w) 1z 11— (w)x 1] } ’

Now a careful comparison with the computation for HD(j,even) with j replaced by k

+(1 4 u)I(1 + o) +

proves that this is equal to

(14 ux)9(1 +vz)9z=F
ff
%0 (1 —2)(1 —uvx)

1— (uww)9~! g g (uv)™M (uv) V2 2y
(1 —uv)? L+ w)¥(1+ o)’ [1 —(w) 1z 1—(w)x 1} }

where HD (N1, No) and HD? are computed as before (with j replaced by d). Therefore, if
d — k is even we get:

{1 (o D (N, M) (1~ () HD

1+ uz)9(1 +vz)9z*

HD(G™ (a(k);3,d,1)) = (1 +u)9(1 + v)Y coeff (

x (1 —2)(1 —uvx)
. ) V2 (uv)9~ 1 (1 + w)9(1 + v)9 _ (uv)™M B (uv)N2+2y
{[1 (u0) ™) (1 —uv)? [1 —(w)~lz  1-— (uv)zz]
1— (uww)9~! (uv)™M (uv)N2t2g

+ (1+u)?(1+ v)? [ 1} +[1 = (uv)*2].

(1 —uv)? 1—(w) 2z 1—(uw)’z
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(1 —uw)?(1 — (uw)?) (1 —uw)?(1 4 uv)

. [(1 +u?0)?(1 +uw?)? — (w1 +u)f(14+0)?  (wo)"H(1+u)o(1+ W’] } _

_ w9 )9 coe (1 + ua;)g(l + Q)x)ga;*k ' (uv>gfl(1 + U,)g(l i 'U)g'
=1 +uw(1+v) J;Off (1—2)(1 — uvzx) { (1— uv)?

(uv)Nl (uv)N2+2az (uv)N1+N2 (uv)2N2+2:c
. (1 —(w) 1z 1—(w)x 1—(w)lz 11— (w)x

(uv)M (uv)N2t+2g 1 — (uw)?N2
1= (w) "z 11— (uwv)?x 14w >
(14 u)9(1 +v)9 (uv)M (uv)N2+2y

(1 —uw)? 1—(w) 'z  1— (w)z } *

1= ()] - (14 u20)9(1 4+ uv?)? — (uv)?(1 + w)9(1 + v)9 } _

(1 —w)*(1 = (uwv)?)

=(1+u)f9(1+wv) coeff

(1 + ux)9(1 + vx)Iz=Fk ' { (uv)9=1(1 +u)9(1 + v)?
x (1—2)(1 —uvx)

(1 —uv)?

. ((uv)2N2+2x ()Mt (UU)QN2>

1—(w)z 11— (w) ' 1+ uv
(14 u)9(1 +v)9 (uv)M (uv)N2+2y
(1 —uw)? [1 —(w)tz 11— (w)x 1} *

1= ()] - (14 u20)9(1 4+ uv?)? — (uv)?(1 + w)9(1 + v)9 } .

(1 —w)*(1 = (uv)?)

Therefore, by substituting Ny = k and No = g — 1 4 (d — 3k)/2, we get:

Lemma 14.3.2. Ifd — k is even, then

HD(G (a(k);3,d,1)) =

— (1 w)?(1 + v)f copff LU UL H 017 {<uv>g‘1(1 + w1l +v)

(1—2)(1 — uvx) (1 —uv)?

(uv)2g+d—3kx1—k (uv)g—1+(d—k)/2m—k wor—Fk + (uv)29_2+d_3kl’_k N
1— (uwv)?z 1— (uwv)~lz 1+ uv

(I+w(1+v)9 | (w)fa=® (uw)9t+1H(d=3k)/2g 1=k ok
(1 —uv)? 1— (uwv)~lz 1 — (uv)?z v

+

_,'_[1 o (uv)2g—2+d—3k]x

(14 u?v)9(1 + uv?)9 — (uv)9(1 +u)9(1 + v)g}
(1 —w)*(1 = (ww)?) '
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14.3.4 The “last” moduli space

We observe that G*(«(0);3,d, 1) = &; therefore, we get that if d = d — 0 is odd, then:

HD(GL(3,d,1)) = HD(G(«(0)7;3,d,1)) = HD(G™ («(0);3,d,1)) =
= HD(G (a(0);3,d,1)) — HD(G T (a(0);3,d,1)) = HD(0,0dd).
Now the function
(1 4+ uz)d(1 +vx)9
(1—-2z)(1 —uvx)
is holomorphic around = = 0, so we get that coeff .o f(x) = f(0) = 1. Therefore we get:

fz) =

Proposition 14.3.3. If d is odd, then:

HD(G(a(0)753,d,1)) = (1 (u0)22F7).
(]‘ + u)g(l + ’U)g(]. + u2v)9(1 + uv2)g — (uv)g(l + u)29(1 + U)2g
(1 —uv)?(1 — (uwv)?) :

Since this moduli space is smooth, by setting u = v =: ¢, we get the Poincaré polynomial
of G(«(0)7;3,d,1):

_ 1+t2gl+t32g—t291—|—t4g
Pe(a(0)-:3,d1)(t) = <1 _ 4229 2+d)> ( )9( ) ( ) _

(L= )21 — 1)

(1+6)29[(1 + )29 — 129(1 + 1)%9)(1 — t?(29-2+d))
(1—=2)2(1—1t)

which coincides with the formula given in [BGMMN] corollary 8.7]. Note that in that paper

this is the best that one can say about the moduli spaces G(«;3,d,1) for o non-critical.
Indeed, if d > 3, then the value denoted by ar in that paper is given by
ar = % = a(l).
So there are no critical values that we have to cross in order to get to ar starting form
a(0). Therefore, the results of this section agree with those of [BGMMN]| and improve them
at least in the case (n,d, k) = (3,d,1), d > 3 and odd.

If d=d —0is even then

—. _ — g g (1 4+ ux)?(1 + vx)?
HD(G(a(0)7;3,d,1)) = HD(0,even) = (1 +u)9(1 + v) C(;eoﬁ (1—2)(1—waz)

1= ()

‘ { (14 u?0)9(1 + uv?)9 — (uv)9(1 + u)9(1 + v)9
(1 —w)*(1 = (uw)?)
(uwv)9 (1 + u)9(1 + v)? ' (uv(l + (uv)~2z)
(1 —uv)?(1 4 uv) 1— (uwv)~lz




14.3 Crossing a critical value «(j) 305

1— (uwv)?z (1 — (uwv)~la)(1 — (uv)3z)

(u0)29=244(1 + (wv)?z)  (ww)9 Y21 4 ww)(1 — uv$2)> }

Now if we write
wv(1 + (uv)~2x) N ()29~ 241 + (uv)3x)
1— (w) 1z 1 — (w)?x

(w)9~1442(1 4+ wv) (1 — uvaz?)
(1 — (wv)~tz)(1 — (uwv)2z) ’

then it turns out that f is holomorphic in  around z = 0 and that

CO%H f(z,u,v) = f(0,u,v) = uv + (uv)2g—2+d _ (uv)g_1+d/2(1 ) =
= wv(1 + (w)2973Hd ()9 2T/2 _ (yp)atd/2-1),
So we get that:

Proposition 14.3.4. If d is even, then

HD(G(a(0)7;3,d,1)) = (1 +u)?(1+ v)g{[l — (ww)297 2],

(14 u?0)9(1 + uv?)9 — (uwv)9(1 + uw)9(1 + v)9
(1 —uv)?(1 = (uv)?)

PSR 1))

As a corollary, we get that the formula for the Poincaré polynomials (we recall that this
moduli space are smooth for all d):

_ 1+13)29 —129(1 +1)%9
Pga(0)-3,a,1) () = (1 +1)% {[1 — o2 : 1 z (1 (_ 2) )

91 +1)% <1 L 220-3+d) _ j29-4+d _ tzg+d—2>
(1—t2)2(1+1t2) '

As a check of the correctness of proposition we can compare our formula with

corollary [8.0.11) in the case when g = 2 and d = 2. In this case the previous formula for the
Hodge-Deligne polynomials becomes:

HD(G(a(0)7:3,2,1)) = (1 +u)2(1 + v)*
| {[1 = (upyty . LA+ un?)® = (o) (14w (1 + v)°
(1 —uv)*(1 = (uv)?)

uv 2 u 2 v 2

1+ (uv)?

(14 2u?v + u'o?)(1 + 2uv® + u?o*)+



306 14. Case n=3, k=1

uv 2 u 2 v 2
—(uv)?(1 + 2u + u?)(1 + 2v +v?)) + ( (1)_(112)2()1&;)) (1 —ww)?(1 + uv)} =

= (1+u)*(1+v)% {(1+u20?) (1 —uv) 2 (1 + 2uv? + u*v* + 200 + duPvP+
+2u4v5 + utv? + 2udvt + uSv8 — u0? — 20203 — wPot — 2u30? — 43

—2uPvt — utv? — 20t — utot) + (w)? (1 + 2u + u?)(1 + 20 +0%)} .

Now a direct check proves that

1+ 2uv? + u?v* + 2020 + 430% + 2u*0® + uto? + 2uP0* + ub8 — wZ0? — 2P+

—uZv?t — 2u30% — 4P — 200t — ut? — 20t — ute?t =

= (1 —w)?[1 + 2uv + 2u*0? + 20303 + 2u%v + 2uv? + vt + 2u3v? + 20203
Therefore by substituting we get:

HD(G(a(0)753,2,1)) = (1 +u)*(1 +v)* - {(1 +u*v?)-
(14 2uv + 2uv? 4 20303 + 2uPv 4 2uv? + uto? + 2uv? 4 2003+
+u?v?(1+ 2u 4+ u?) (1 + 2v + vz)} =
= (14 2u+u?)(1+2v+0?)- {14 2uv + 2uv? 4 2u3v® 4 20?0 4 2uv? 4wt
+2u30? + 2020 4+ u?0? + 20303 + 2uto? + 20507 + 2ut® + 2030t + WOVC + 2P0t + 20t +
+u%0? 4 20203 + w0t + 2uP0? + 4B + 200t + ute? + 20t + u4v4} =
= (14 2v + v* + 2u + 4uv + 2uv® + u? + 2u?v + uv?) - {1 + 2uw + 2u*v + 2uv+
+4u?0? 4 4u30? + 40?0 + uto? + 8udvd + wPot 4+ 4wt + 4Pt 4+ dutot+
+2uSv? + 20t 4 20505 + u6v6} =
=14 2uv + 2u?v + 2uv? + 4u?v? + 4030? + 4u?0® + uto? + 8uPvd+
2ot + 4utod + 4030t + dutot + 200t + 2ut0® + 200 + uCO+
+20 4 4uv? + 4u0? + 4uv® + 8uv® + 8udv® + Suv? 4 2utv® 4 16uPvi+
+2u20° + 8utv? 4 8uv® + 8utv® + 4uSv® + dutv® + 4uS® + 208+
+02 + 2uv® + 2003 + 2uv? + duot + dudot + 4uP0® + utot + 8udvS+
+u208 4 4ute® + 406300 + 4utob + 20P08 + 20T + 20007 + WSS+
+2u + 4u?v + 43 4 4u0? + 8uPv? + 8utv? + 8udv + 2uSv? + 16uted+
+2uPv + 8ubv?® + Sutvt + 8uPv?t + 4uSvt 4 4uPvd + 4ubP + 20 V0 +
+4uw + 8u?v? 4 8uv? + 8u?v? 4 16030 + 16uv?® 4+ 16usv* + 4uv3+
+32utv* 4 4u0® + 16uv? + 16ut0® + 16uv® + 8ubv® + 8uv® + 8ubv® 4+ 4u v+
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+2uv? + 4uv® + 4303 + 400t + 8udvt 4 sutv? + 8udv® + 2uPut+
+16utv® 4 2008 + 8uPv® 4 8utv® + 8uPv® + 4uSv8 + 4uPvT + 4uSu” + 20T+
+u? + 2030 + 2utv + 2030? + duto? + 40?4+ 4t + ubv? + 8uPvd + utot+
+4uSv3 + 4uPvt 4+ 4ubvt + 2u"vt 4+ 2u50° + 20TV 4+ uBVS+
+2u%v 4 4u3v? + 4utv? + 430 + 8utv? + 8uPvd + Sutvt + 2ubv3+
+16u’v* 4 2utv® + 8ubv* 4 8uSv® + 8ubv® + 4u 0% + 4SS + 408 + 2uB0 T+
+u?0? 4 20303 + 20t + 2030t + duto? + 4Pt + dut® + WSt + 8uPVP+
+uto® + 4ub0® + 4uP08 + 4ub08 + 20708 + 26507 + 20TV + uB® =
=14 2u+ 2v + u? + v? + 6uv + 8uv + S8uv? + 6uv + 6uv® + 21uv? + 2utv + 2uv* +
+26030? 4 26120 4 50030 + 17uv? + 1700 + 5200 + 52030 + 6uPv? + 6uv®+
+ubv? + 280 + Tautot + 28u3v® + w200 4 6ulv? 4 61’ + 52uSvt + 5t +
+17ubv* + 1760 + 506”0 + 26150 + 266508 + 20Tt + 20t ™ + 216508 + 6uTVO+
+6uS0” 4+ 8u v + 8ubv” + 6uTv” + uB® + ubv® + 2uB” + 2uTV® + uBvd.

This coincides exactly with formula (8.13] We remark that it should also be possible to
compare the Hodge-Deligne polynomial obtained before for every g with the one described in
theorem [8.0.10] but this would require some more work.

14.3.5 The polynomials of the other moduli spaces

In order to compute the Hodge-Deligne polynomials of all the other moduli spaces for
(3,d,1) (for o non-critical) we proceed as in chapter So if we use together (14.8)) and
(14.9), we get that for every 0 < k < d/3

HD(G(a(k)™;3,d,1)) = HD(G(a(k) ;3,d,1)) — HD(G(a(0)";3,d,1)) =
= Z HD(j,odd) + Z HD(j,even) =

0<j<k,d—j odd 0<j<k,d—j even
B )9 2V coo (1 +ux)9(1 +vz)? [ (14 u?0)9(1 4+ uv?)d — (uv)g(l—%u)g(l—i-v)g.
= (L w4 o) codlt = g — ) { (= w2(1 — (w)?)

Z x—j ((UU)Qj _ (uv)Qg—Q—l—d—?)j) + (uv)gil(l + U’)g(l + ,U)g'

oSk (1 —uv)?(1 4 uwv)

Z | <(“v)2j+1(1 + (uv) ) N (uv)297=2+4=31 (1 + (uv)3z)

_ —1 — p)
0<j<k,d—j even 1 (uv) T 1 (UU) x

B (uv)9~1H@=/2(1 4 uw) (1 — uvz?)
(1 — (wv)~la)(1 — (uv)3z) )
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Now if we extend the two summations for j < 0, this does not change the result since
in both cases we are adding a function f(z,w,v) that is holomorphic in x around z = 0 and
such that coeff .o f(x,u,v) = f(0,u,v) = 0. So this does not affect the results after taking the
coefficient of 2°. So we can write

_. _ g g (1 +ux)?(1 +vx)?
HD(G(ak)733,d, 1)) = (1+w)? (1 + v} coef Za—

[
(1 —uv)?*(1 — (uv)?)
(uv)9 (1 + w)9(1 + v)9 1+ (uww) %z
(1 —uv)?(1 4 wv) . <Bk1 — (uwv)~ 1z
1+ (w)’s (14 uv)(1 — uva?)
1— (uwv)2x Dy (1 — (uwv)~1z)(1 - (uv)%)) } ’

where we use the following notation:

A+

+

+C,

2 2
and
Ay = Z 2 (uw)2 — x—j(uv)Qg—Q-i—d—Bj _
—co<j<k

= Z (uv)2kx—k(uv)2jx—j _ (UU)29_2+d_3kx_kx_j(uv)_?’j _

—00<j<0
- Z (uv)?* 2 ((uv)22)" — ()29~ 243k (yp)3z)h =

0<h<4o0

(uv)%x_k (uv)29_2+d_3kx_k.

1— (uv)—2z 1— (w)dz
By, = Z x_j(uv)zj'“ — Z xQI_d(uv)2d_4l+1 _
—o0<j<k,d—j even (d—k)/2<l<+o0
— Z x2l7d(uv)2df4l+1 — leofd(uv)2d74lo+1 Z ((’U,’U)74.T2)l _
lo<l<+o0 0<l<+o0

(uv)Qd—ﬁllo—l—lxﬂo —d

1 — (uv)~422 ;

C) = Z o (uv)2g—2+d—3j _ Z $2l—d(uv)2g—2—2d+61 _

—o00<j<k,d—j even (d—k)/2<l<+o0

_ Z ‘T2lfd(uv)2g72f2d+6l — x2107d(uv)297272d+610 Z ((UU)6332)Z —

lo<l<4oo 0<i<+o0
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(uv)29—2—2d+610 $2l0—d

1 — (uv)b22 ;

Dy = Z o ()9 1Hd=)/2 = Z 22 ()9~ 1H =

—o0<j<k,d—j even (d—k)/2<l<+400
_ Z x2l—d(uv)g—l+l — ZL‘2l0_d(u’U)g_1+l0 Z (’LL’UCL‘2)Z _
lo<l<+4+oc0 0<i<+o0

(uv)g71+lox2lo*d

1 — uvz?
So we get;:
N B g g (14 ux)?(1 + vax)?
HD(G(a(k)™);3,d,1) = (1 +u)(1 +v) C(;%H =1 = awn) :
‘ { (1 +u?0)9(1 + uv?)9 — (uv)9(1 + u)?(1 + v)9 . < (uv)?kg=F N
(1 —uw)?(1 — (uww)?) 1— (uww) 2z

(uv)Qg—Q—f—d—Skx—k (uv)g_l(l +u)g(1 +v)g (uv)Qd—4lo+1l,210—d
11— (w)dx > (1—w)2(l+w) < 1— (wo)422

1+ (uwv) 2z (uw)?97272d+6log2lo—d 1 4 (yp)3g

1— (uwv)~lz 1 — (uv)b22 1- (uv)2x+
B (uv)g*1+10x210*d ' (1 + uv)(l _ uv:r2) > }
1 — uvz? (1 — (uv)~tz)(1 — (uwv)?z)

Therefore, by rearranging and simplifying we get:

Theorem 14.3.5. For every smooth projective irreducible curve C of genus g > 2 and for
every d > 0 and for every critical value

alk) = (d—3k)/2, 0<k<d/3

the following formula holds for the Hodge-Deligne polynomial of the moduli space G(a(k)™;3,d,1).

—. _ g g (14 ux)9(1 + vx)d
HD(G(a(k)73:3,d 1)) = (14w (1 + v} coeft Z— a2

‘ { (1 + w?0)9(1 + uv?)9 — (uww)9(1 +u)9(1 + v)9 . < (uv)?* =k N
(1 —ww)?(1 — (uv)?) 1— (uv)~2z

B (uv)29_2+d_3kx_k (U’U)g_l(l 4 u)g(l 4 ,U)g . (uv)2d_4lo+1x2l0_d
1= (w)z > A w21+ w) ((1 — (wo)22)(1 = (wo) 1)

(uv)297272d+6l0$2107d (1 4 UU)(UU)gil+lox2loid > }
)

+(1 — (w0)32)(1 — (w)2z) (1 — (uwv)~1z)(1 — (uv)2x)

where lo := [(d — k)/2].

(14.10)
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Remark 14.3.1. As a check for the correctness of the formula above, let us denote by p the
previous polynomial and let us verify Poincaré duality for it. As in the previous chapter, we
simply substitute u and v with their inverses and x with uvz.

o s oegy (L 021+ u)?
(07 = () I+ (14 ) cogft LT

' { (uv) 739 (1 + u?0)9(1 + ww?)9 — (uwv)~29(1 4+ u)9(1 4+ v)9 . <(uv)_3kx_k
(uwv)=4(1 — wv)?((uww)? — 1) 1 — (uv)3z
B (uv)3k+2_zg_d(uv)_kx_k> N (uv)t=29(1 4+ u)9(1 + v)?
1— (uwv) 2z (u)73(1 — wv)?(1 + uwv)
<(uv)4lo—2d—1(uv)Qlo—deZo—d N (uv)2+2d_29—ﬁl° (uv)Zlo—dl,Zlo—d
(1 — (uv)3z)(1 — (uv)?x) (1 — (uv)22)(1 — (wv)~1x)
(uv)_l(l + uv)(uv)l_g_lo (uv)QlO_d:r%_d B
- (1 = (uv)?z)(1 — (uv) ') >} a
(14 va)9(1 + ux)?
(1 —-2)(1 —uvx)
. {(’Uﬂ))439 (1 + u2v)9(1 + UUQ)g — (uv) (1 + u)g(l + U)g (uv)2f2gfd_
(1 —uv)*(1 — (uv)?)
(et v>2g2+d3kxk> + fay-s0 07 (L0
—d

= (uv) (1 +u) (1 +v)? coe;ff

—(w0)2z 11— (w)dz (1 —uv)?(1+ w)
o (et .
(1= (wv)~22)(1 (UU) tr) (1= (uw)’z)(1 — (w)?x)
)(u

uv )9~ 1+l p2lo—d
: <(1 “ >( >><1 - <uv>2x>>} = (u0) " Op(u,v).

Now according to [BGMN]|, the moduli spaces G(«;3,d, 1) are smooth for o non-critical

(uv) 2g—2—2d+6lg m2l0—d

and their dimension coincides with the expected dimension 5(3,d,1) = 6g + d — 6, so the
previous polynomials satisfy Poincaré duality.

Remark 14.3.2. Up to a multiplicative term (1 + u)9(1+ v)9 (see remark |13.3.1) the previous
polynomials coincide with the ones described in [M| theorem 6.5] for the moduli spaces of
stable triples, after setting d; :=d, do :== 0, ng := d — k, so that

mo = 2[(no +1)/2] = 2[no/2] = 2[(d — k) /2] = 2ly.
As a corollary, we can compute the Hodge-Deligne polynomials for the moduli spaces of
stable objects at any critical value:
G*(a(k);3,d,1) ~ G(a(k)™:3,d,1) ~ Gt (a(k);3,d,1) ~
~ G(a(k)";3,d,1) ~ G (a(k);3,d,1).

This result will be used in the computation for the case n = 4,k = 1. The polynomials
will have 2 different forms according to d — k being odd or even. In both cases, we simply
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consider the difference between the formula of the previous theorem and the formula for the
Hodge-Deligne polynomial of G~ («(k);3,d, 1) already written.

If d — k is odd, then lg = [(d — k)/2] = (d — k + 1)/2, so by combining theorem
with lemma we get:
s ] _ (1 +ux)9(1 + vz)9
HD(G®(a(k);3,d,1)) = (1 +u)9(1 +v)Y C(;%ff A= —uwa)
. { (1 +u*0)9(1 4+ uv®)9 — (wv)9 (1 +u)9(1 +v)9 < (uv)?kg=F
(1 —uv)?(1 — (uv)?) 1— (uv)—2z
B (uv)zg—2+d—3k$—k (uv)g_l(l + u)g(l + U)g ‘ ( )Qk 1 1 k
1= (w)z ) A C w1+ w) ((1 ~ (w0)22)(1 — (wo)-

(uv)29+d+1_3kl‘l_k (1 + uv)( )g 1+(d—k+1) /2 1—k
+ - . +
(1 — (uww)3x)(1 — (uv)?x) (1= (wv)~la)(1 — (uv)?z) > }

C(1 4 w91 + 0)9 coeff (14 uz)9(1 + vx)9 [:c_k (« )29 >3k, —k

20 (1 —2)(1—uvx)
'(1+u2v)9(1+uv2)9— w)d(1+u)d(14+v)9
(1 —w)*(1 = (uv)?) B

(14 ux)?(1 +vx)?
(1 —-2)(1 —uvx)

. { (1 +u20)9(1 + uv?)9 — (uv)9(1 + u)?(1 +v)9 _ < (uv)?kg =k N
(1 —uw)?(1 — (uww)?) 1— (uww) 2z

(u0)7~1 (1 +w)?(1 + )9

=(1+u)f(1+wv) co%ff

(uv)29_2+d_3kx_k

_xfk + (uv)292+d3kxk> +

1 — (w)3z (1 — w)2(1 + wv)
) ()20 Hd 1 =3k 1k
. <(1 — ( )_Qx)(l — (uv)—lx) + (1— (w)3z)(1 — (uv)%)+

(1+ uv)(uv)g_lﬂd—kﬂ)/?xl—k
T (1= (w) ) (1 = (w0)%a) > } '

Therefore, we get that:

Corollary 14.3.6. For every curve C as before and for every critical value

ak)=(d-3k)/2, 0<k<d/3
such that d — k is odd, the following formula holds:

(14 ux)?(1 + vx)?
(1 —2)(1 —uvx)

. { (1 +w*0)9(1 4 uv®)9 — (wv)9 (1 +u)9(1 +v)9 < (uv)?z—F
(1 —uv)*(1 — (uv)?) 1— (w) 2z

HD(G*(a(k);3,d,1)) = (1 +u)?(1 4 v)? co%ff

_l’_
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_ (up)Potitd=shgl-k x_k> (u0)? (1 +uw)9(1 +v)7
1— (w)3z (1 —uv)?(1 4 o)

(uv)2k—1g1=k (uw)29+d+1-3k 1k
(Tt * T e

(1+ uv)(uv)g—“(d—kﬂ)/?xl—k
T (1= (w) ) (1 - (w)’) ) } '

As a check for the correctness of this formula, we can consider the case k = 0, where we

obtain the zero polynomial. This agrees with the fact that the space G®(d/2;3,d, 1) is empty
since d/2 is the last critical value for (3,d,1).

If d — k is even, then lg = [(d — k)/2] = (d — k)/2, so by combining theorem [14.3.5| with
lemma [14.3.2| we get:

S( (). _ (1 + uz)9(1 + va)d
HD(G(a(k);3,d,1)) = (1 +u)?(1 + v)7 coeff (1—2)(1 —uvzx)

‘ { (14 u?0)9(1 + uv?)9 — (uv)9(1 + u)9(1 + v)9 ' < (uv)?kg =k N
(1 —uv)?(1 — (uwv)?) — (uv)2x

B (up)29—2+d=3k =k (uv)9 (1 +u)9(1 +v)9 ' (uv)2k+1g=F
) i ((1 ~(w)

1 — (uv)3z (1 —uv)2(1 + uwv) —22)(1 — (uv)—lx)+

(uv)29+d—2—3k:x—k (1+ uv)(uv)g—l—k(d—kz)ﬁx—k) } .

T woPn) A (@z) (1 (uo)2)(1 — (w)a)

- u)? v)Y coe (1 + uz)9(1 + va)? ) (uv)? (1 +U)g(1+’u)g.
(1+u)!(1+v) zoﬁ (1—2)(1 —uvz) { (1 — uv)?

((uv)Qg—i-d—Sk:xl—k (uv)g—1+(d—k)/2x—kz uvx—k+(uv)2g—2+d—3k$—kz>+

1— (wv)?x 1— (uwv)~lx 1+uv
(14+w)9(1+v)9 | (uv)rz=* B (up)9t1H(d=3k)/241—k .
(1 —uv)? 1— (uwv)~lz 1 — (uwv)?z

L1 = (- 2rdsky (L u)9(1 ) — (wo)o(1 4 w)?(1 4 “>g} _

(1 = uv)?(1 = (w)?)

= u)? v)Y coe (L+uz)?(1 +v) (1+v*0)9(1 +uv?)? — (u)9(1 +u)9(1 +v)?
=1 +u)f(l+0) mff (1 —2)(1 —uvx) { (1 — wv)2(1 — (uv)?)

2k p—k )29~ 2+d—3k .~k wu)9 (1 + w)9(1 + v)9
' < - ()uv) 27 L )1— (uv)3z —a Tt (uv)292+d3k3;k> * ( ()1 —(uv;(l)—iuj) : '

' < (uv)2+1 gk (wv)20+d—2-3k —k (1 + wv) (ww)9—1Hd=k)/25—k
(1 = (uv)

25 (1= (wo) 2) | (1= (wo)n)(1— (w)2z) (1 — (uv) o)1 — (u0)2z)

2g+d—3k (1 1-k g—1+(d—k)/2(1 —k
) e (R Lo O (1+uv)z _Wk_(m)292+d3kxk>+

1 — (uv)?z 1— (uwv) 1z
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(1 —uv)? 1— (uwv)~lz 1— (uwv)?z

L+ w1 +v)9 | (wo)fa™  (up)stH@-30/2 1k xk] }
Therefore, by rearranging we get that:
Corollary 14.3.7. For every critical value

a(k)=(d—3k)/2, 0<k<d/3

such that d — k is even, the following formula holds:

HD(G*(u(k); 3,d, 1)) =

= (w4 o) codt = g — (1= w)2(1 — (w0)?)
. < (uv)?kz=F  (yp)2otitd=3kyl—k B xk) N (uv)9=1(1 +u)9(1 +0)?

1—(w) 2z 1— (uwv)3x (1 —uv)?(1 4 uv)

(14 uz)9(1 +vx)? { (14 w?0)9(1 + uv?)9 — (uwv)9(1 4+ u)I(1 + v)9

( (uv)Qk—i—lx—k (uv)2g+d+4—3kx2—k (1+ w)(uv)g+1+(d—k)/2x1—k

(1= (wo)22)(1 — () 12) (1= (wo)sz)(1 — (wo)?z) (1 (o) 12)(1 — (uo)Zz)

—uvx_k) I+l +0)f

(1 —uv)? 1—(w) 1z 1 — (uwv)’x

(wv)kz—F (up)9+1+(d=3k) /2 1k - x_k] }

Also in this case, a check for the correctness of this formula is given by considering the
case k = 0, where we obtain the zero polynomial, that agrees with the fact that the space

G3(d/2;3,d,1) is empty.






Chapter 15

Case n=4, k=1

First of all, let us compute the critical values for the triple (4,d,1). By [BGMN] §2 and
proposition 4.2], the non-zero virtual critical values are all in the set

nd —n'd
n'k — nk n—=k

d
/s.t.OSk’Sk, 0<n' <n, n'k+#nk, d’eZ}ﬁ]O,[.

In our case, this gives
4d' — n'd
n' — 4k’

So we have the following 6 types of non-zero virtual critical values:

d
st. k=0,1, n' =1,2,3, d’ez}m]o,3[.

(D) ik =10 =1,{¢—3dst. 0<d <4}
2) K =10 =2, {d—2d st. $ <d < g}
(3) if ¥ =1,n' =3, {3d — 4d’ s.t. 3d < d < 3d};
(4) if ¥ =0,n' =3, {3d' —dst. 3d<d <d};
(5) it K =0,n' =2, {2d' —dst. $ <d < 2d};
(6) if ¥ =0,n' =1, {4d —dst. ¢ <d < 2}.

Now the first 3 sets coincide with the last 3 ones (the bijection is given by replacing d’ in
the first 3 sets by d — d’ in the last 3 ones), so we need to consider only the first 3 sets. The
best way of parametrizing all such objects at the same time is to consider the set

{a(j) = d_32j s.b. 0<j< ;l} (15.1)

Since we will also need to cross the value d/3, we will consider also a(0) = d/3 as a critical
value. Such a set contains (1), (2) and (3) by setting respectively j = 2d’, j = 3d’ — d and
j = 6d — 4d. According to this parametrization and to the identification of (1), (2), (3) with
(4), (5), (6) we will get that:
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e the cases (1) and (4) are possible only for those values of 0 < j < d/2 such that
7 =0 mod 2;

e the cases (2) and (5) are possible only for those values of 0 < j < d/2 such that
J = —d=2d mod 3;

e the cases (3) and (6) are possible for those values of 0 < j < d/2 such that j = —4d =
2d mod 6.

In particular, if we rewrite the previous relations mod 6, we get that the class of j mod 6
can only belong to the set {0,2,4,2d,2d + 3}mod 6 = {0,2,4,2d + 3}mod 6. In particular,
this proves that at most 4 of the 6 classes of j modulo 6 are obtained, so the set is
overabundant. In particular,

e if d=0mod 3 (i.e. d=0,3 mod 6) then all these values coincide with {0,2,3,4};
e if d=1mod 3 (i.e. d=1,4 mod 6) then all these values coincide with {0,2,4,5};

e if d =2 mod 3 (i.e. d=2,5mod 6) then all these values coincide with {0,1,2,4}.

So in all the various cases not all the possible values of j correspond to actual critical values.
In particular, we will be interested in crossing the critical values in the interval [ar,d/3]. By
IBGMMN| lemma 2.4], ar is given by (d —4)/3 whenever d > 4. Therefore the critical values
we are interested in are given by

d—4 d—2 d
aT:T:a(2)<T:a(l)<§:a(O).

In other terms, we will be interested in particular in j € {0, 1,2}. The values 0, 2 are always
obtained in all the 3 cases, while the value j = 1 is obtained only in the case d = 2 mod 3.

15.1 The moduli spaces G*(«a(j);4,d,1)

Let us fix any critical value a(j) = (d — 25)/3 with 0 < j < d/2 and let us consider
any object (E,V) € G™(a(j);4,d,1) (if j = 0, we will obtain the empty set and the zero
polynomial, so this will not give any problem for our computation). Since n = 4, then all the
objects of G (a(j);4,d, 1) have length 7 of the a(j)-Jordan-Hélder filtration equal to 2,3 or
4. So let us consider the 3 different cases separately.

15.1.1 Caser =2

By applying lemma any (E,V) in G (a(j);4,d,1) with length of the a.-JHF equal
to 2 sits in a non-split exact sequence:

0= (Q1,W1) = (B,V) = (Q2, W2) = 0 (15.2)
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with conditions (a)-(b). Then condition (a) implies that k; = 0, but a priori n; can be either
equal to 1,2 or 3.

(1) If ny = 3, then ny = 1; since py;(E,V) = d/3 — j/6, then condition (b) implies
that dy = d — j/2. Therefore, this case is possible only if j = 0 mod 2. If we assume that
condition, then both dy = d — j/2 and dy = j/2 are non-negative integers. Since r = 2, we
must impose that both (Q1,W1) = (Q1,0) and (Q2, W3) are «(j)-stable. Since there are no
critical values for (3,d;,0) and (1,d2,1), this simply means that we are considering all pairs
(Q1,0), (Q2, W3) such that:

(Q1,0) € M°(3,d—j/2) = G1, (Q2,W2) € G(1,5/2,1) = Go.

Since HY, = H3, = 0, we get

dim Ext!((Qq, Wa), (Q1,0)) = Coy =
=ninao(g — 1) — ding + dany + kady — kani(g — 1) — k1ka =
=3(g—1) —(d—3j/2)+3j/2+ (d—j/2) =3(g — 1) = 3j/2.
Then we can apply proposition for r = 2. So for every critical value «(j) such that

j = 0 mod 2 we get a contribution to G (a(j);4,d,1) by a projective bundle over G7 x G
with fibers isomorphic to P3%/2-1 So we get the polynomial:

T kO R e e
n D= HD(M(3,d — j/2)) 1—uv zoff (1 —2)(1 —uvx)

If 5 = 0, this is the zero polynomial, as it should be.

Now we recall that we are assuming that j is even, so:
e d—j/2=0mod 3 if and only if j = 2d mod 6;
e d—j/2#0mod 3 if and only if j =2d+ 2 mod 6 or j = 2d + 4 mod 6.

In the first case, we don’t know an explicit formula for the Hodge-Deligne polynomial of
M*(3,d— j/2); in the second case we have an explicit formula, as described in chapter [8| (and
such a formula does not depend on j or d). We will denote the corresponding 2 polynomials
by HD(M (3,7 =¢ 2d)) and HD(M?3(3,j =¢ 2d + 2)) = HD(M?3(3,j =¢ 2d + 4)) respectively.
According to that notation, we denote by p{zﬁzd and p{562d+2 = p{562d+4 the corresponding

polynomials.

(2) If ny = 2, then ny = 2. Moreover, condition (b) implies that di = (2d — j)/3, so
this case is possible only if j = 2d mod 3, that is j € {2d,2d + 3}moed 6. If we assume that
condition, then both d; and dy = d — d; = (d + j)/3 are non-negative integers.

Now we recall that both (Q1,0) and (Q2, W2) must be strictly a(j)-stable (otherwise, the
length of the Jordan-Hélder filtration would be bigger than 2). So we need to consider 2 cases:
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(a) if j = 2d mod 6, then dy = (2d — j)/3 is even, so we are considering

2d — j

(Q1,0) € M® (2, > = M®(2,even) =: G;
(b) if j = 2d + 3 mod 6, then d; = (2d — j)/3 is odd, so we are considering

2d — j
3

(Q1,0) € M* <2, > = M*(2,0dd) = M™(2,0dd) =: G.

Analogously, (Q2, W2) must be an object of the moduli space G®(«(5);2, (d+5)/3,1). Such
a scheme is not empty if and only if 0 < a(j) < (d + j)/3, but this condition is automatically
satisfied by definition of a(j) for all j > 0 (for j = 0 the moduli space of semistable objects is
non-empty, while the stable locus is empty). Then we have to verify if a(j) is critical for the
triple (2, (d +5)/3,1). According to the computations of chapter a(j) is critical for such
a triple if and only if a(j) = (d + 7)/3 — 2k for some 0 < k < (d + j)/6. So this gives:

d—2j d+j— 6k
3 3
So «(j) is critical for (2, (d+7)/3,1) if and only if j = 2k for some 0 < k < (d+7)/6. If we
set j = 2k, this is equivalent to imposing 0 < j < (d+ 7)/3, that is equivalent to 0 < j < d/2.
These are exactly the conditions we already put on j, so «(j) is critical for (2,(d+ 5)/3,1) if

_d+j

a(f) = —5= — 2k = j=2k.

and only if j is any admissible value (i.e. 0 < j < d/2) such that j = 0 mod 2. Now we have
to distinguish 2 cases as follows.

(i) If j = 0 mod 2, then (d — 2j)/3 is a critical value for (2,(d + j)/3,1). In particular, if
we set k := j/2 € Ny, then we can write (d — 25)/3 = (d + 7)/3 — 2k and we need to
consider

d+ 7 d+ 7
(Q2,W3) € G° (;] — 2k; 2, —;],1) =: Gs.

According to corollary [13.3.2] with d replaced by (d + j)/3 and k replaced by j/2, we
have that

HD(Gy) = (I+wo1+v)s (O +ur)(l+va)?

1 —uv 2 (1 —2)(1—uvz)

1—z(uww)t 1 — z(uv)?

. [(W)j/%j/? (wv)9 1 H=20)/351-3/2 - /2]
By remark [13.3.4] this is the zero polynomial if k =0, i.e. if j = 0.

(ii) If j =1 mod 2, then we can define k := (j — 1)/2 € Ny, so that

d=2j _d*J g,
3 3
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Then if we recall that the critical values of (2, (d+7)/3,1) are of the form (d+ j)/3 — 2k,
we need to consider

d+j d+j
(Q2, W) € G® <?—2k—1;2,;7,1> =

d+j d+j /
S . .
=G (3 — 2k —¢;2, 5 ,1) =: Gy.

According to theorem [13.3.1| with d replaced by (d + j)/3 and k replaced by (j —1)/2,
we have that

(14 ux)?(1 + vax)?

D(GY) = ff .
HD(Ga) 1 —uw % (1 —2z)(1 —uvx)
(ufu)(jfl)/Qx(lfj)/Q (uv)g+(d72j)/3x(1fj)/2
. 1—z(uww)=t 1 — z(uv)?

We recall that we are under the hypothesis j € {2d,2d 4 3}moq 6. Therefore, under that
condition we have j = 0 mod 2 if and only if j = 2d mod 6 and j7 = 1 mod 2 if and only if
Jj =2d+ 3 mod 6. So cases (a) and (b) match with cases (i) and (ii) respectively.

Since HY, = H3, = 0 for all values of j, we get:

dim Ext!((Q2, W), (Q1,0)) = Ca1 =
= nlng(g — 1) — ding + donq + kody — k‘in(g — 1) — ki1ksy =
=d4(g—1)— 2250 4290 L 20 9(g 1) =292+

So for every critical value «(j) such that j = 2d mod 3, we get a contribution to Gt («a(35); 4,
d,1) by:

e a projective bundle over Gy x Go with fibers isomorphic to P?973%7 if j = 2d mod 6;
e a projective bundle over G} x G with the same fibers if j = 2d 4+ 3 mod 6;

So we get the polynomials

i=6 _ 1
P = s (20 07 0 (14 0071 )

—(1+u)?9 (1 +0)2(1 + 2099 —u20?) — (1 —u?)9(1 —v?)9(1 — uv)2>-

(I+w)I(1+wv)? cooff (1 4+ ux)9(1 +vx)?

1—wv 20 (1—x)(1 —uvz)
' (uv)j/2:c_j/2 B (uv)g+1+(d—2j)/31:1—j/2 ] 1 — (uv)29—2+j
1—z(uv)~! 1 — z(uv)?

1—wv
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and
pr=ozies _ (L w1+ 0)0 (14 w*o)9(1 + ue’)? — (uo)?(1+ (1 + )
? (1 —uv)(1 = (uv) )
(A +u)f(1 4 v)f Coeff (14 ux)?(1 +vx)?
1—uw (1—-2x)(1 —uva:)

(ww)=D/250=D/2 () g+ d=20)/350=0)/2] 1 _ (yp)20-2+i

1—z(w)t 1 — z(uv)? . 1—uv

according to the 2 possible values of j modulo 6.

If 7 =0 (and d = 0 mod 3), then we are in the first case and the associated polynomial po
is the zero polynomial, as it should be.

(3) If ny = 1, then ngy = 3. Moreover, condition (b) implies that di = (2d — 5)/6, so
this case is possible only if j = 2d mod 6. If we assume that condition, then both d; and
do = d —d; = (4d + j)/6 are non-negative integers.

Now both (Q1,0) and (Q2, W) must be strictly «(j)-stable. For (Q1,0), this simply
amounts to considering all possible (Q1,0) € J24=7)/6 = G|. On the other hand, (Qa, W>)
must be an object of the moduli space G®(a(j);3,(4d + j)/6,1). Such a scheme is non-
empty if and ounly if a(j) < (4d + j)/12, but this condition is automatically satisfied by
definition of a(j) for all j > 0 (if j = 0, the semistable locus is non-empty, while the stable
locus is empty). Then we have to verify if a(j) is critical for the triple (3, (4d + j)/6,1).
According to the computations of chapter a(j) is critical for such a triple if and only if
a(j) =de2/2—3k/2 = (4d + j)/12 — 3k /2 for some 0 < k < da/3 = (4d+ j)/18. So this gives:

B ()_4d+j_§ﬁ_4d+j—1%
— T 2 = 12

So «(j) is critical for (3,dg, 1) if and only if j = 2k for some 0 < k < (4d+7)/18. If we set
J := 2k, this is equivalent to imposing 0 < j < (4d + j)/9. These conditions are equivalent to

j = 2k.

0 < j < d/2, that are exactly the conditions we already put on j. Therefore, a(5) is critical for
(3,d2,1) if and only if j is any admissible value (i.e. 0 < j < d/2) such that j = 0 mod 2. But
we recall that the case we are considering is possible only when j = 2d mod 6, that implies
j =0 mod 2. Therefore, when this case is possible, a(j) is always critical for (3,ds, 1). Then
if we define k := j/2 € Ny, we need to consider

1/4 ] 4 ]
(Q25W2) €G® <2 < d6—|_] 3k> a3adﬁ—*—]71) = G2~

Now we recall that according to chapter [[4] we have 2 different formulae for the Hodge-
Deligne polynomial of G*((d' — 3k")/2;3,d’,1) depending on d’ — k' being odd or even. In our
case d = (4d + j)/6 and k¥ = j/2, so
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dd+j j 4d—2j 2d—j
6 2 6 3

Since in this case we are assuming j = 2d mod 6, then d' — k' is even, so we can apply
corollary [14.3.7| with d replaced by (4d + j)/6 and k replaced by j/2 and we get

d/_k/:

HD(G2) = (1 +u)?(1 +v)?-
- coeff (1 +ux)o(1 + va)s . { (1 +u?0)9(1 + uwv?)9 — (uwv)9(1 +u)9(1 + v)g.
2 (1 —2)(1—uvx) (1 — w)2(1 — (uv)?)

' (uv) x=3/2 B (uw)29t14(2d=47)/341-3/2 A (uv)9~H(1 +u)9(1 + v)?
1— (uv)—2z 1 — (uv)3z (1 —uw)?(1 4 uv)

(L () 22)(1 — (wo) 1) ' (1~ (wo)%w)(1 — (uv)?2) (1= (uo)~tz)(1 = (uv)®x)

( (wv)iH /2 (wv)29H4+CA=49)/3,25/2 (1 4 ) (up)9+1+(2d=9)/6,1-5/2

B —j/2> (A +w)(1+0v)?
uvx (1 — w0)?

(uv)j/2w7]’/2 (uv)g+1+(d73j)/3xlfj/2 —j/2
1— (w) 'z 1— (uwv)2x - '

Now for all values of j we have that H), = H3, = 0, so:

dim Eth((QQ, WQ), (Ql, 0)) =(Cq1 =
= nlng(g — 1) — ding + donq + kody — anl(g — 1) — ki1ko =
=3(g—1) - 324 p 4 2od (g 1) =292+ j/2.

Then we get a projective bundle over Gy x Gy with fibers isomorphic to P293+7/2. So we
get the polynomial

Py = HD(G1)HD(Ga)HD(P~3H9/2) =

29—245/2
g1 — (uv)™ il

=(14+u)?(1+v) HD(G2) =

1—wuv

= (1 w)(1 4+ 02 (1 —w

(14 uz)9(1 +vx)? { (1 +u?0)9(1 + uv?)9 — (uwv)9(1 +uw)9(1 + v)?
20 (1—2)1 —wvx) (1 —wv)?(1 — (uw)?)

_ (uv)iz=1/2 B (uw)20t14(2d=47)/3,1-3/2 A (uwv)971(1 +u)9(1 +v)?
1— (uww) 2z 1— (wv)3w (1 —uv)?(1 4 uv)

(uv)it1g=/2 (up)29+4+Qd=47)/3,2=5/2 (1 4 ) (up)9+1+(2d=1)/62,1-3/2
' <(1 ~ (o) Z)(1— (wo)2) (L~ (o)) (I~ (u)a) (1 = (uo)~tz)(1 = (uwv)?z)

e\ A +w)i(d4v)f
—uvx ) — (1 — U'U)Q

1—(w)lz 1 — (uv)?z — '
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15. Case n=4, k=1

15.1.2 Caser =3

In this case the graded of (E,V) is necessarily made of 3 objects of the form (Q1,0),
(Q2,0), (Q3, W3) (a priori not necessarily in this order) where 2 of the @;’s are line bundles
and one is a vector bundle of rank 2. So we need to consider 3 possibilities.

(a) If Q3 is the vector bundle of rank 2, then necessarily ()1 and @2 are line bundles of the
same degree d; = dy = (2d — j)/6 and Q3 has degree d3 = (d + j)/3.

(b) If Q3 is a line bundle, then we get that ds = j/2; if Q1 is a line bundle, then it has degree
dy = (2d — j)/6 and Q2 is a vector bundle of rank 2 and degree da = (2d — 7)/3.

(c) If Q3 is a line bundle, then we get that d3 = j/2; if Q2 is a line bundle, then it has degree
equal to do = (2d — j)/6 and Q1 is a vector bundle of rank 2 and degree d; = (2d — j)/3.

Therefore, all the 3 cases are possible only when j = 2d mod 6. For each case we have to
consider 2 different subcases according to the various a(j)-canonical filtrations.

(1) Unique «(j)-Jordan-Holder filtration. If the filtration is unique, we need to fix
the order of the 3 objects of the graded. The object (Q3, W3) must be necessarily the last ob-
ject of the graded, otherwise it destabilizes (E, V) for a(j)*. Therefore we have the following
possibilities.

(1a) Let us suppose that the graded is given by (Q1,0) ® (Q2,0) & (Q3, W3) with:

e (1 and Q9 both line bundles of degree d; = dy = (2d — j)/6;

e (Q3,W3) with Q3 vector bundle of rank 2 and degree d3 = (d + j)/3.

In this case Hom ((Q3, W3), (Q2,0)) = 0 by lemma indeed both objects are a.-stable
with the same slope and they are not isomorphic since their types are different. Then we have
to consider two subcases as follows

(La-i) If we suppose that (Q1,0) % (Q2,0), then we can apply proposition in order
to parametrize all the corresponding (E,V)’s. In this case Hom((Q2,0), (Q1,0)) = 0, so the

invariant a of that proposition can only assume the value

a = dim Eth((Q2,0>, (Ql,O)) ="y = nlng(g — 1) —ding + dong = g—1

on the set U, = G1 X G2 ~ A12. So we have a projective bundle R, over U, with fibers
isomorphic to P! = P92 If we write Ey = (E»,0) for any non-split extension of Qo by
Q1, we get that Fy is a vector bundle of rank Ny = 2 and degree Dy = 2d; = (2d — j)/3.
Moreover, Ext?((Qs3, W3), (E2,0)) = 0 because k3 = 1 and also Hom(—, —) = 0; therefore we
get that the invariant b can assume only the value:

b = dim Ext!'((Q3, W3), (E2,0)) =
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= Ngng(g— 1) — Dong + dsNo + k3 Do —ngQ(g— 1) =
=4(g—1)—2Dy+2d3+ Dy —2(g — 1) =2(g — 1) — Dy + 2d3 =
=29—-2—(2d—j)/3+2(d+j)/3=29—2+ .

Moreover, the invariant ¢ can only assume the value:

¢ = dim Ext'((Q3, W3), (Q1,0)) = C31 =
=ning(g—1) — ding + dsny + ksd; — ksni(g — 1) =
=2(g—1)—2d1+ds+di—(g—1)=g—1—dy+d3s =
=g—1-(2d—4)/6+(d+j)/3=9g-1+]/2

Therefore, we can assume that U, ;. = R, x G3 and we have a bundle R, . over Ugp. .
with fibers isomorphic to P*~1 \Pe~1 = P29-3+5 ( P9—2+3/2 that parametrizes all the (E,V)’s
under consideration. We recall that Gy = Gy = J(@=2)/6C. Since j = 2d mod 6, then we
can define k := j/2 € Ny; since 0 < j < d/2, then we get that 0 < k < (d + j)/6. So we are
considering all the (@3, W3)’s in the scheme

ey . 4 4
G3 =G (d 3;2,d+3,1> e <d;” —2k;2,d+3,1>.

3 3 3

Then we can use corollary [13.3.2] with d replaced by (d + j)/3 and k replaced by j/2 and
we get that

(1+u)9(1+wv)9 (14 uz)9(1 +vx)?

D = ff
HD(Gs) 1—wuv 08 (1 —2)(1 —uvx)
1 —z(uv)~! 1 — z(uv)? ' '

Then we get the Hodge-Deligne polynomial
P = HD(Ryy,) = (%D(IP’QQ*?’“) - HD(PHH/?))HD(Gg)HD(Ra) -
= (HD(P29_3+j) - HD(P9_2+j/2)>HD(Pg_2)-

“HD(G3) - HD(G1) (HD(G1) — 1) =

_ (uw)9=1H3/2 — (yp)29-2+ 1 (uv)9—1 (w1l +v)9

1—uv 1—uv 1—uv
g g 3/2.—3/2 g+(d—25)/3+1 .1—5/2 )
- cooff (I+ux)?(1+ox)? | (w0)’ "z _ (w) x _ i
2 (1—2)(1— uvx) 1—z(uv)~! 1 — z(uv)?

(T+u)(1+v)((1+uw)(1+v)9—1).
By using remark|13.3.4{we get that if j = 0 (that is, if k = 0), then p4 is the zero polynomial.
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(1a-ii) Let us suppose that (Q1,0) ~ (Q2,0). Since k3 = 1, then we get that Ext?((Qs3, W3),
(Q1,0)) = 0. So we can apply proposition in order to parametrize all the corresponding
(E,V)’s. In this case we need to compute the invariants:

a = dim EXt1((Q270)7 (Qlao)) = 021 +1= g

and

b = dim Ext'((Q3, W3),(Q1,0)) = Cs31 =g — 1+ j/2.

Therefore, we get a projective bundle R, over G1 = Go with fibers isomorphic to P9~1;
the (E,V)’s we are interested in are parametrized by a bundle R, over R, x G with fibers
isomorphic to C9~2+7/2 x P9=2+3/2_ In this case the schemes G and G3 are as in case (la-i),
so we get the polynomial:

pi="* = HD(G1)HD(G3)HD(CI 2y UD (B~ HD(PI ") =

_ g g(l—i-u)g(l—i-v)g (1 + ux)9(1 4 va)?
=(1+u)f(1l+wv) T cc;%ff TR T g _

(ww)i/2a=il2 (y)o+(d=20)/3+141-i/2

1= z(uo) T 1 — z(uv)?

— 32

_orisol — (uv)
: g—2+3/2

(wv) 1—uv 1—uv
As in the proof for py4, also ps is zero if j = 0.

(1b) Let us suppose that the graded is given by (Q1,0) & (Q2,0) & (Q3, W3), where:
e ()1 is a line bundle of degree d; = (2d — 7)/6;
e ()2 is a vector bundle of rank 2 and degree ds = (2d — 7)/3;

e (O3 is a line bundle of degree d3 = j/2.

Since 1 is a line bundle and )2 is a vector bundle of rank 2, then these 2 coherent
systems cannot be isomorphic; since they are both ac.-stable, then lemma [1.0.4] implies that
Hom((Q2,0),(Q1,0)) = 0. Moreover, we have also that Hom ((Qs, W3), (Q2,0)) = 0 because
both objects are a.-stable with the same slope and they are not isomorphic. Then we can
apply proposition in order to parametrize all the corresponding (E,V)’s. In this case
the invariant a can only assume the value

a = dim Eth((QQ,O), (Ql,O)) =(C9 = nlng(g — 1) —ding + dong =
2 —j 2d—j
=2(g—1)—
(9—1) 5 T3

on the set U, = G1 X Ga. So we get a projective bundle R, over U, with fibers isomorphic
to P2973, If we write Ey = (E»,0) for any extension of Q2 by Q1, we get that No = 3 and

=2g—2
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Dy = dy +dy = d — j/2. Moreover, Ext?((Q3,W3), (Fs,0)) = 0 because k3 = 1 and also
Hom(—, —) = 0; therefore we get that the invariant b can assume only the value:

b = dim Ext!((Q3,W3), (E2,0)) =
= Ngng(g — 1) — Dong + dsNo + ks Doy — k3N2(g — 1) =
=3(9g—1)— Da+3ds+ Dy —3(9g — 1) = 3ds = 35 /2.

Moreover, the invariant ¢ can only assume the value:

¢ = dim Ext'((Q3, W3), (Q1,0)) = C31 =
= nlng(g — 1) —ding + dsgny + ksdi — kgnl(g — 1) =
:(g—l)—d1+d3+d1—(g—1):dgzj/z.

Therefore, we get that Uy . = Ry X G3 and we get a bundle R, . over Uy, . with fibers
isomorphic to P=1\ Pe—1 = P3/2-1 Pi/2-1 Now the objects (Qqi, W;)’s vary in the following
sets:

(Q1,0) € Gy = JRI=D/OC (Qq,0) € Gy = M3(2,(2d — §)/3),
(Q3,W3) € G3 =G(1,5/2,1).

Since we are assuming that j = 2d mod 6, then (2d — j)/3 is even, so for the scheme Gy
we need to use formula (8.11)). Then we get the Hodge-Deligne polynomial

P = HD(Rype) = (HD(PY/27) — HD(P//27)) ) HD(Gy ) HD(R,) =
B (uv)i/? — (uw)3i/? . (1 +ux)9(1+ v:c)ga:_j/z_
B 1 —wuv 0 (1—2)(1 —uvx)
HD(P?973) . HD(JP=D/OC) . HD(M?(2, even)) =
(w2 — (uw)P/? _ (14 ux)9(1 + va)Iz I/ 11— (uv)29—2'
N 1—wv 0 (1 —-2z)(1 —uvx) 1—wuv
1
2(1 —uv)(1 — (uv)?)

(14 u)(1+v)9 - (2(1 Fw)(1 4+ 0)9(1 + u0)(1 + u?)I+

—(14w)2(1 +v)29(1 + 2099 —u%?) — (1 —u?)9(1 — 091 — uv)Z).
Also in this case, if j = 0, then we get the zero polynomial.
(1c) Let us suppose that the graded is given by (Q1,0) ® (Q2,0) ® (Qs, W3) where:

e ()1 is a vector bundle of rank 2 and degree d; = (2d — j)/3;
e ()7 is a line bundle of degree do = (2d — j)/6;

e ()3 is a line bundle of degree d3 = j/2.
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Also in this case Hom ((Q3, W3), (Q2,0)) = 0. Since @ is a vector bundle of rank 2 and
()2 is a line bundle, then these 2 coherent systems cannot be isomorphic; therefore we can
apply again proposition in order to parametrize all the corresponding (F,V)’s. Since
Hom((Q2, W2), (Q1,W1)) = 0, then the invariant a can only assume the value

a = dim Eth((QQ,O), (Ql,O)) =9 = nlng(g — 1) —ding + dong =
—2(g— 1) — (24— j)/3+ (24— )/3 =2 — 2

on the set U, = G1 X Ga. So we will get a projective bundle R, over U, with fibers isomorphic
to P2973. If we write Fy = (FE»,0) for any non-split extension of Q2 by Q1, we get that No = 3
and Dy = dy + dg = d — j/2. Moreover, Ext?((Q3, W3), (E2,0)) = 0 because k3 = 1 and also
Hom(—, —) = 0; therefore we get that the invariant b can assume only the value:

b = dim EXt1((Q37 W3)7 (E27 0)) =
= Nong(g — 1) — Dans + d3No + k3 Do — k3Na(g — 1) =
=3(g—1)— Do+ 3ds+ Dy —3(g — 1) = 3d3 = 3j/2.

Moreover, the invariant ¢ can only assume the value:

¢ = dim Ext'((Q3, W3), (Q1,0)) = C31 =
=nin3(g — 1) — ding + dsny + ksdy — kani(g — 1) =
:2(g—1)—d1+2d3+d1—2(g—1):2d3:j.

Therefore, we get that U,y . = R, X G3 and we get a bundle R, . over U,y . with fibers
isomorphic to PP=1 \ Pe—1 = P33/2-1 ( PI~1. Now the objects (Q;, W;)’s vary in the following
sets:

(Q1,0) € Gy = M5(2,(2d — 5)/3), (Q2,0) € Gy = J24=D/SC,
(Qs,W3) € G3 = G(1,5/2,1).

Since we are assuming that j = 2d mod 6, then (2d — j)/3 is even, so for the scheme G,
we need to use formula (8.11)). Then we get the Hodge-Deligne polynomial

P = HD(Ry ) = (HD(P3j/2—1) — HD(]P’j_l)>HD(G3)HD(Ra) =

(w) — (uv)3/? (1 4+ uz)9(1 + vx)Iaz=i/?
N 1—wuv % (1—2)(1 —uvx)

HD(M?(2, even)) - HD(P?~3) . 4D(J24=9)/6C) =

_ (uwv)! — (uv)3/? oo (14 uz)9(1 4 vz)9z /2 1 — (uv)?9—2
N 1—wuv 0 (1—2)(1 —uvx) 1—wuv
1

2(1 —uv)(1 — (uv)?)

(14 u)f(1+v)9- (2(1 +u)9(1 +v)9(1 + u?v)9(1 + uw?)I+
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(14 w)29(1 4 0)29(1 + 209 e~ 2e?) — (1 — u2)9(1 — 02)I(1 — uv)Q).

Also in this case, if j = 0, then we get the zero polynomial.

This concludes the computations for the case when (E, V') has a unique «(j)-Jordan-Holder
filtration of length 3.

(2) Not unique «(j)-Jordan-Holder filtration. In this case the a(j)-canonical filtra-
tion has length s = 2 (it cannot be equal to 1 because this would imply that the corresponding
(E,V)’s are semistable only at the critical value and they are not stable either on the left or
on the right of any such value). If the length of the canonical filtration is s = 2, by using the
same argument used before we get that the a(j)-canonical filtration of (E, V) is of type (2,1)
and it is given by

0C(Q1,0)®(Q2,0) C (E,V)

with (E,V)/((Q1,0) & (Q2,0)) = (Q3, W3). In this situation the 2 cases denoted by (b) and
(¢) before coincide since the order of (Q1,0) and (Q2,0)) is not important. Therefore, we have
only to consider cases (a) and (b).

(2a) Let us suppose that the (Q;, W;)’s are described as in (a). Then (Q1,0) and (Q2,0)
are of the same type, so we need to consider 2 subcases.

(2a-i) Let us suppose that (Q1,0) % (Q2,0); since these objects are of the same type,
then we can use proposition in order to have a global parametrization. In this case the
invariant a can assume only the value

a = dim Ext' ((Qs, W3), (Q1,0)) = C31 =

=nin3(g — 1) — ding + dsny + kady — ksni(g — 1) =
2% —j d+j 2d—j ,
=2g-D-—5 gt gD =g-1+j/2

and analogously also b can only assume the value b = g — 1+ j/2. Therefore the only schemes

we are interested in are those described in (c) and (d) in that proposition. From the point of
view of Hodge-Deligne polynomials, we can assume that there is a unique index ¢ = j, so that
there is only one scheme of type (d). Using the last part of proposition , we get that the
(E,V)’s we are interested in are parametrized by a scheme M /Zs and from the point of view
of Hodge-Deligne polynomials we can assume that M is the scheme

(Gl X Ga N Aj12) X G3 X P9—2+i/2 IPQ*QJFJ/?’

where Zsg acts by:

(Q1,Q2a (Q37W3)aM1,M2) > (Q%Qla (Q37W3)7M27M1>-
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Let us write M’ := Gy x P9=2+3/2 = J(2d=5)/6 1 » P9=2+i/2 Then

1 — (uw)9~—1+3/2

1—wv

HD(M")(u, v) = (1 +w)9(1 + v)°.

Therefore we can compute:
A= %D((M’ M) /Zg)(u,v) -
= & (D) (1, 0) + HD( ) (a7, ~07)) =

(1= (uw)s 143722
( (1 — uv)?

1— (uv)29—2+j
1 — (uv)?

1
5 (1+w)*(1+0)% +

(1—u?)?(1~ v2)9>
and
B .= HD((AlQ « PI213/2 Pg—2+j/2)/22) _

= HD(A,) - HD((]}DQ*QH/? % ngfzﬂ/?)/z?) _

~ (qp)9-1+i/2)2 — (qp)29-2+
:;(1+u)g(1+v)g<(1 ((1_>M)2 F ! 1<_()w)2 )

Since j = 2d mod 6, then it makes sense to define k := j/2 € Ny and we get that (Qs, W3)
varies in the scheme

d—2  d+j d+j d+j
Gs =G < 5 5T > G ( 3 k; T3

So we can use formula ([15.3]) in order to compute HD(G3) Finally, we can compute:

Py~ = HD(M/Zs) = HD(G3) - (A~ B) =

_ (I+w)9(1+wv)9 coeff (14 uz)9(1 + vx)?
2(1 — uw) 20 (1 —2)(1—uvx)

. [(uv)j/2xj/2 (uv)HE=20)/3+141-3/2 - /2] .

1—z(uv)~t 1 — z(uv)?

1— (uv)2gf2+j
1 — (uv)?

— (up)9—1+i/2)2 — (uw)?9—2+i
—(1+u)(1 +v)? ((1 <(1—)uv)2 o 1(— (zwﬁ >}

Using remark [13.3.4]if j = 0, we get pg = 0.

(L4+u)2(1+v)% + (1 —u?)9(1 —v?)9+

(1~ (u)o-143/2
{ (1 —uv)?

(2a-ii) If we are in case (a) and (Q1,0) ~ (Q2,0), then the corresponding (E,V)’s are
parametrized using proposition From the point of view of Hodge-Deligne polynomials,
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we can assume that there is a single index 7. Also in this case, there is only one value for the
invariant a, namely a = g — 1+ j/2 as in (2a-1). So we can assume that the (E,V)’s we are
interested in are parametrized by a grassmannian Grass(2, R,) where R, is a vector bundle
over U, = G x G3 with fibers isomorphic to C9~119/2. Here G and G are as in case (2a-1),
so we get the polynomial:

ngGQd := HD(Grass(2, R,)) =
:zHD(Gmqug-1+j/m)-Hzmag-¢nxcg):

(L= @) IR ()Y oy o)

- (1~ w)?(1— (w)?) (14w (1 +0)%)

(1+ux)?(140vz) | (u)i/2e=3/2  (uo)9t(d=2)/3+1,1-5/2
‘ [1 — z(uv)~1 B 1 — z(uv)?

— 92|

'C?:%ﬂ: (1—2)(1 —uvx)

Using again remark [13.3.4] we get that also in this case pg = 0 for j = 0.

(2b) We have also to consider case (b) (that coincides with case (¢)). In that case @
and ()2 have different ranks, so in particular their types are different, so we can simply apply
propositionin order to parametrize the corresponding (E, V')’s. In this case the invariants
a can only assume the value:

a = dim Eth((Qg, W3),(Q1,0)) =j/2

(this is computed as the invariant ¢ is computed in (1b)), and b can only assume the value:

b = dim Ext!'((Q3, W3), (Q2,0)) =
=non3(g — 1) — donz + dgng + ksda — ksna(g — 1) =
=2(g—1)—de+j+des—2(g—1)=.

From the point of view of Hodge-Deligne polynomials we can assume that there is a single
index 7. So we can assume that the (E,V)’s we are interested in are parametrized by a scheme
R that comes with a sequence of two projective fibrations

R— A—U=G x Gy xGa;

the first fibration has fibers isomorphic to P! = P7~!, while the second fibration has fibers
isomorphic to P4~ = P7/2-1, Here the schemes G; for i = 1,2, 3 coincide with those described

in case (1b). So we get the polynomial:

p{?a?d _ HD(PJ—I)HD([Pj/Z_I)H’D(Gl)HD(GQ)HD(GB) =

_1- (uv)’ 1 (uv)i/?

1 gl g.
1—uv 1—uv ( +u)( +v)

'2(1 - m))(ll — (uv)?) (2(1 + u)9(1 4 v)9(1 + u?v)?(1 + uv?)9+
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(14 W) (1 4 0)29(1 + 20 LIt u2?) (1 — u?)(1 — 0?)I(1 — uv)Q)-

g 9p—3/2
- cooff (14+ux)I(1+vx)x
0 (1—2)(1 —uvx)

So also in this case we get the zero polynomial for j = 0.

15.1.3 Caser =4

In this case the graded is necessarily made of 4 objects of the form (Q;,0)i=123, (Q4, W4)
where (Q4, W;) must be necessarily the last object of the graded in order not to desta-
bilize (E,V) for a(j)™. Moreover, every Q; for ¢ = 1,2,3 must be a line bundle and
the stability conditions prove that the @Q;’s for ¢ = 1,2,3 must all have the same degree
dy = dy = ds = (2d — j)/6. Therefore, this case is possible only when j = 2d mod 6. More-
over, (4 is a line bundle of degree dy =d —3dy =d — (2d — j)/2 = j/2.

Then we need to consider several different subcases according to the various possible «(j)-
canonical filtrations. The cases we will consider are those when such a filtration is of one of
following types: (1,1,1,1) (unique a(j)-Jordan-Hélder filtration), (3,1), (1,2,1) and (2,1,1).
A priori we should also consider the cases (1,1,2), (1,3) and (4); none of these 3 cases is actu-
ally possible since in each case we will have a quotient (E, V) — (Q3,0) and this would prove
that (E, V) is not af-stable, so these 3 cases do not occur in the description of Gt (a;4,d, 1).

(1) Canonical filtration of type (1,1,1,1) (unique «(j)-Jordan-Hélder filtration).
Since the (Q;,0)’s for i = 1,2,3 are all of the same type, we need to consider 4 subcases
according to the various relations between them:

(a) (Q1,0) ~ (Q2,0) # (Qs,0);
(b) (Q1,0) #(Q2,0) # (Q3,0);
(€) (Q1,0) ~ (Q2,0) ~ (Q3,0);
(d) (@1,0) #(Q2,0) = (Q3,0).

(1a) Let us suppose that (Q1,0) ~ (Q2,0) % (Q3,0). Then we can apply proposition
[6.2.2] In this case we need to compute the invariants a,b,c,d,e, f. In order to do that,
let B3 = (E3,0) be any non-split extension of Q2 by Q1 and let (E”, V") be any non-split
extension of (Q4,Wy) by (Q3,0). Then FEj is a vector bundle of rank Ny = 2 and degree
Dy = 2dy = (2d — j)/3; E” is a vector bundle of rank N” = 2 and degree D" = d3 + dy =
(2d—3)/6+7/2 = (d+7)/3. Moreover, the dimension of V" is K" = 1. Since (Q1,0) ~ (Q2,0),
we have:

a = dim Eth((QQ, 0), (Ql, 0)) = 021 + 1= nlng(g — 1) — leLQ + dgﬂl + 1= g.

Since (Q3,0) % (Q4, Wy), we have
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b= dim Ext'((Q4, Wa), (@5,0)) = Cis =
= n3n4(g — 1) —dgng + dyng + kads — k‘4n3(g — 1) =
:(g—l)—d3—|—d4—|—d3—(g—1):d4:j/2.

Moreover, since (Q1,0) is of the same type of (Q3,0) and since (Q1,0) % (Q4, Wa), we
have:

f = dim Ext'((Q4, Wa), (@1,0)) = b= j/2.

Now (FEs,0) is a non-split extension of (Q1,0) by itself and (E”, V") is a non-split extension
of (Q1, Wa) by (Qs3,0). So as in (6.44) and (6.62) we get:

Hom((E", V"), (E,0)) = 0 = Hom((E",V"),(Q1,0)).

Moreover, we have also that Hom((Q4, Wy), (E2,0)) = 0 because the graded of (FE3,0)
does not contain any object isomorphic to (Q4, Wy). Then we can compute also the following
invariants.

¢ = dim Ext!'((E",V"), (F,,0)) =
= NQNH(g — 1) — DQN” + D//Ng + K”Dg — K”Ng(g — 1) =

=4(g—1)—22d—j)/3+2(d+5)/3+(2d—j)/3-2(g—1) =29 —2+j.

d = dim Ext'((Qq, Wy), (E2,0)) =
= N2n4(g — 1) — Dong + daNy + ka Do — k4N2(g — 1) =

=2(g—1)4+2ds—2(9g—1) =2dy = j.

e = dim Ext'((E", V"), (Q1,0)) =
= nlN”(g — 1) — le” + D"nl + K”dl — K”’)’Ll(g — 1) =
=2(g—1)—(2d—j)/3+(d+j)/3+2d-j)/6—-(9—1)=g—1+j/2.

So each invariant can only assume one value. From the point of view of Hodge-Deligne
polynomials, we can ignore the indices 4, j, ! of proposition so without loss of generality
we can assume that we have the following description:

e U, = G; = G2 and there is a projective bundle R, over it with fibers isomorphic to
]P)a—l — [P)g—l;

e U’ = G3 x G4 and there is a projective bundle R? over it with fibers isomorphic to
pb-1 — Pj/Q—l.
7
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e from the point of view of Hodge-Deligne polynomials we can assume that R, x R =
G1 X G3 x Gg x P9~1 x Pi/2-1 S0 we can assume that

Uap,cde,f = (G1 x G~ Aj3) x Gy x P91 x Pj/Qfl;
there is a bundle Ry} ¢ 4, over it with fibers isomorphic to Ce 1 x (Pee I\ Pd—f-1) =

CI~243/2 5 (P9~2+3/2 ( PI/2-1),

77777

G =Gy =Gy =JDOC G, =G(1,5/2,1).

So we get the polynomial

P = HD(Rypedey) = (HD(G1)? — HD(G1))HD(G4)HD(PI~ YHD(PI/271).

HD(CI~2HI/2 5 (P9=2H/2 (pI/2—1)) =

(1 +ux)9(1+ vx)ga:*j/z.
(1 —2)(1 —uvx)

g—24jy2 (w0)? — (Uﬂ)ngj/Q'

1—wuv

= (1 w1+ 0)?((1+ (1 +v)? — 1) couff

1— (uw)d 1— (uw)i/?
1—wv 1—wv

- (uv)

Also in this case, if j = 0, then we get that the polynomial is zero.

(1b) Let us suppose that (Q1,0) % (Q2,0) % (Q3,0); we don’t need to fix any additional
condition on the relations between (Q1,0) and (Q3,0). Then we can apply proposition [6.2.4]
Also in this case we need to compute invariants a, b, c,d, e, f. In order to do that, let Fy =
(E2,0) and (E”,V") be as in case (1a). Then we get the same invariants computed before,
except for the invariant a that now has value g — 1 (instead of g). In particular, each invariant
can only assume one value. From the point of view of Hodge-Deligne polynomials, we can
ignore the indices ¢, 7,1 of that proposition, so we can assume that:

e U, = G1 X G2 \ Ajs and there is a projective bundle R, over it with fibers isomorphic
to Pe—l = P92,

o U’ = G3 x G4 and there is a bundle R? over it with fibers isomorphic to P—1 = pi/2-1,

e from the point of view of Hodge-Deligne polynomials we can assume that R, x R® =
(G1 x Ga N A12) x G3 x Gy x P92 x Pi/2=1 8o we can assume that

Ua,b,c,d,e,f = ((Gl X Gg Alg) x Gz~ G X Agg) x Gy X P92 x Pj/Qil;

there is a bundle Ry p ¢ 4.¢,r Over it with fibers isomorphic to Pe~I\Pdte=f =1 = p29=3+i
]Pyg—2+j.
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The (E,V)’s we are interested in are parametrized by the scheme R, cd.e f. Also in this
case

G =Gy =Gy =J%DC G, =G(1,5/2,1).

Now

HD((Gl X G2 AN A12) X G3 AN G1 X Agg) = HD(G1 X GQ X Gg) — ’H'D(Alg X G3 U G1 X Agg) =

= HD(G1)? — HD(A13 x G3) — HD(G1 x Agz) + HD(A1z x G3 NGy x Agg) =
= HD(G1)? — 2HD(G1)? + HD(G1) = HD(G1)(HD(Gy) — 1)°. (15.4)

So we get the polynomial

Pl = HD(Rapcaes) = HD(G1)(HD(G1) — 1)*HD(Ga)
HD(PI2)yHD(PI/ 2 YWD (P29~3+T  PI~2H7) =
(1 +ux)9(1+ m;)gx*j/z.
(1 —2)(1 —uvx)
1- (uv)9—1 1= (uv)i/? . (uv)9=1H7 — (uw)29-2+7

1—uv 1—uv 1 —uv

= (14w (1+0)* (1 +w)* (1 +v)? —1)° cocff

Also in this case, if j = 0, then we get that the polynomial is zero.

(Lc)-(1d) As we stated in remark we are still not able to give a geometric descrip-

tion of these 2 cases. We simply denote the corresponding polynomials by p{?szd and p{f“w

respectively.

(2) Canonical filtration of type (3,1). Since the (Q;,0)’s for i = 1,2,3 are all of the
same type, we need to consider 3 subcases as follows:

(a) there are no pairs of isomorphic objects among the (Q;,0)’s for i = 1,2, 3;

(b) exactly 2 objects among the (Q;,0)’s are isomorphic; without loss of generality we can
assume that they are (Q1,0) and (Q2,0);

(¢) (@1,0) =~ (Q2,0) ~ (Q3,0).

(2a) Let us suppose that there are no pairs of isomorphic objects among the (Q;,0)’s
for i = 1,2,3. Then we can apply proposition [7.4.4] In this case we need to compute the
invariants a, b, ¢; the same computation that gives the invariants b and f in case (1a) proves
that we have:

a = dim Extl((Q4, W4),(Q1,0)) = j/2.

Analogously, since (Q1,0), (Q2,0) and (Q3,0) are all of the same type, we get that
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b = dim Ext'((Q4, W), (Q2,0)) = j/2 = dim Ext'((Q4, W4), (Q3,0)) = c.

Now G = J24=9)/6C and G4 = G(a(4);1;5/2,1), so both spaces are irreducible. There-
fore the index ¢ appearing in proposition assumes only one value. Moreover, since
G1 = G2 = Gj, also the indices j and k£ can assume only one value. Therefore, we get that

Ui =Up; = U3 = G1 x Gy.
Then we get that the only scheme R, . ;1 that we will be interested in is Ry 4,4;i,i,4, that

comes with a locally trivial fibration to

1 2 3
Uaaaivii = Ugyi XG4 Ugii XG4 Ugii

a;i

:G1XG1XG1XG4

with fibers isomorphic to P7/2-1 x Pi/2=1 » Pi/2-1 Since this is the only case, then the only
object we need to consider is given by case (j) of that proposition, namely

R := (Raa,a5i.,il (G xG1 xG1~2)x G4 ) /535

where A is the big diagonal of G; x G x (i1, i.e. the set of all triples of objects such that at
least 2 of them are isomorphic. Every o € S3 acts as follows on Uy q,qi.i,i and R q,a:,i,::

o (Qi,Wi)iz1234 — ((Qo(i)s Wo(i))i=1,2,3, (Qa, W4));

® (11i)i=123 + (Mo(i))i=1,2,3 for every point (p1,po,pu3) in the fiber over a quadruple
(Qi, Wi)i=1,... 4.

Moreover, there exists a finite disjoint covering of the base space (G1 X G1 X G1 N~ A) x G4
by locally closed subschemes T; that are invariant under the action of S3 on G1 X Gy X G1 X Gy;
in addition, there exist trivializations of the fibrations from R 4,a:i,i,i t0 Uq,a,isiii

Ry, — T} x PIi/2=1  pi/2-1  pi/2-1

that are compatible with the natural action of S3 on T} x Pi/2=1  Pi/2=1 « Pi/2=1 From the
point of view of Hodge-Deligne polynomials, we can therefore assume that R coincides with a
scheme of the form M/Ss, where M is the scheme

(G1 x G1 x G1 ~ A) x Gy x PI/271 5 pi/2=1 o pi/2-1

and every o € S5 acts on M as follows:

(Q17 Q27 Q37 (Q47 W4)7 M1, 12, M3) =

= (Qo(1), Qu(2)> Qu3): (Qas W), io(1), o (2): Ho(3)) -

Let us consider the following schemes:

M' =Gy x PI/271 = JRED/6 0 pi/2-1)
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Ao :={(Q1,Q2,Q3) € G1 x G1 x Gy s.t. Q1 ~ Qa ~ Q3},
Ar:={(Q1,Q2,Q3) € G1 x G x Gy s.t. Q1 ~ Qs % Q3},
Ao = {(Q1,Q2,Q3) € G1 x G1 x Gy s.t. Q1 =~ Q3 % Qa},
Az = {(Q1,Q2,Q3) € G1 x G1 x Gy s.t. Q2 =~ Q3 £ Q1}. (15.5)

Then Ag ~ G7 and A; ~ G x Gy N A’ for i = 1,2, 3, where A’ is the diagonal of G; x G1.
Moreover, we can write
A=AITAITA;IT As.

Now we have that

M/S; ~ ((M’ x M’ x M)/ S5~ ((Ag x PI/2=1 x Pi/2=1 x Pi/2=1) /5. 11
H((Al 11 AQ 11 A3) X ]P’j/271 X ]P’j/zfl X ]P’j/zfl)/Sg;)) ) X G4. (156)
Now

g1 (uv)j/2.

HD(M')(u,v) = (1+u)?(1+ v)?——

So we can use lemma in order to compute
A= HD(M' x M’ x M")/S3)(u,v) = é(’HD(M’)(u,v))B—F
+%7—[D(M’)(—u2, —v?) - HD(M") (u,v) + %HD(M’)(U3, v?) =
(1 = (uv)?/2)?

6(1 — uv)?

— (uw)?)(1 — (uv)?/?
Q)

Now the action of S3 on Ag is trivial; moreover, we have

= (1+u)*9(1 +v)% + (1 —u?)(1 —v?)(1 4+ u)9(1 +v)9-

g1 (uv)31/?
3(1 = (uv)?)’

(Al HAQ HAg)/Sg ~ Al/ZQ ~ (Gl X G1 AN A/)/ZQ ~ (G1 X Gl)/ZQ N Gl.

So we have:

(Ag x Pi/2—1 o pi/2—-1 [paj/Qfl)/S3 ~ Gy % (Pj/%l w PI/2=1 ]p>j/2*1)/53

and
(A1 11 Ag IT Ag) x PI/271 5 pi/2=1 5 pi/271Y /Gy ~

~ ((G1 x Gy x PI/271 5 P21y 17, < Gy x (P21 x PJ'/H)/ZQ) x Pi/21,

So we compute:
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B, :=HD(G; x (Pj/%l x PI/271 Pj/Qil)/SB)) =

= u)? v)9 - (1= (w)?/2)3 (1= (wo))(1 = (w)?) 11— (uw)¥/? )
=1 +uw(l+v) ( 6(1 — uv)3 + 2(1 — (w)?)(1 — uv) 3(1— (uv)3)>

By = HD((Gl x Gy x PI/21 5 PI/2=1y )7, x PJ/2*1> -

N |

— (uw)?/?)? — (uv)? — (yv)i/?
| <(1 +u) (1 + ”)2QW + (1 —u?)9(1 - 112)91 — Euv§2> - 1 (_ u)v ;

By = HD(Gy x (P21 x P21 [Z5) x P/ =

= 1(1 +u)9(1 +v)? <(1 — (uv)j/2)2 N 1— (uv)j> 1— (uv)j/z.

2 (1 —uw)? 1 — (uv)?

Then by considering everything together, we have:

1—uv

=% = (A= By — By + B3) - HD(Gy) =

={a+uP%1+w@“&f?zéﬁ+<lﬁwuv%%1+m%1+w%

— (u)?)(1 = (uv)/?
(12(1(_ &igm(_ ZU) Lty

g 1= (uv)?7/?

3(1 = (uv)?)
g o (A= ()P (1= (uw))(1 = (u)?) 1= (uw)¥/?
—(L w1l +v)7 < 6(l—w)® | 20— (w)?)(1—uv) 31— (uv)3))

(1 —uv)? 1 — (uv)?

_% ) <(1 +u)29(1 + U)ng + (1 _ u2)g(1 _ ,UQ)gl - (’U/U)j> . 1 —1 (_’u,zzj/2+

(1 —wuv)? 1— (uv)? 1—uw

1 1— VLAY i\ 11— 3/2
+§(1 +u)(1+v)9 <( (uv)’7%) + (wv) > (uv) }
1 9(1 9p—3/2
-coeff( + ux)d(1 4+ vx)9z
0 (1 —2z)(1 —uvx)
(2b) Let us suppose that (Q1,0) ~ (Q2,0) % (Q3,0). Then we can apply proposition
7.4.5| In this case we need to compute the invariants a and b. The same analysis of case (2a)

proves that a = b = j/2 and that the indices i and j can only assume one value. Therefore,
we get that

Ui =Up; = G1 x Ga.
and

Vapig = (Usi X6, Up;) N ((G1 x G1 N A) x Gy) = (G1 x G1 N A) X Gy.

The scheme we are looking at is R, j, that comes with a morphism
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P200p1
Rapij — Vapsij

where ¢, is a fibration with fibers isomorphic to P~ = P7/2-1 and ¢, is the grassmannian
fibration of 2-planes associated to a vector bundle Qg 4. ;j over Vg, ; with rank a = j/2. So
we get:

P52 := HD(Rapi ;) = HD(G1 x Gy ~ AYHD(G4)HD (P2~ Y HD(Crass(2,j/2)) =

(1 + ux)9(1 4 va)dz—I/?

= (1 +w)? (1 +v)* — (1 +v)?(1 +v)?) - coeff

x (1 —2)(1 —uvx)
1= () (1 (PP (o))
1—wuv (1 —uv)(1 — (uv)?)

(2¢) Let us suppose that (Q1,0) ~ (Q2,0) ~ (@3,0). Then we can apply proposition
. In this case the only invariant that we need is a. As before, a = j/2 and the index i can
only assume one value. Therefore, we get that U,,; = G1 x G4. The scheme we are looking
at is the grassmannian of 3-planes associated to a locally free sheaf R,.; of rank a = j/2 over
Ua:i- So we get:

P2 .= HD(GL)HD(G4)HD(Grass(3,7/2)) =
(1 + ux)?(1 4 va)Iz=I/?
(1 —-2)(1 —uvx) '
(1= ()21~ ()~ )(1 ~ (w0’
(1= w)(1 = (w)?)(1 — (uv)?) '
(3) Canonical filtration of type (2,1,1). Since the (Q;,0)’s for i = 1,2,3 are all of the

same type and since the order of (Q1,0) and (Q2,0) is not important, we need to consider 4
cases as follows:

=(1+u)f(1+v)- co%ff

(a) (Q1,0) # (Q2,0) ~ (Qs3,0);
(b) (@i,0) # (Qj,0) for all i # j € {1,2,3};
(c) (Q1,0) ~ (Q2,0) # (Q3,0);
(d) (Q1,0) ~ (Q2,0) ~ (@3,0).

(3a) Let us suppose that (Q1,0) # (Q2,0) ~ (Q3,0). Then we can apply proposition [7.5.1]
In this case we need to compute the invariants a,b, ¢, d. In order to do that, let (E”, V") be

any non-split extension of (Q4, Wy) by (Q3,0); then E” is a vector bundle of rank N’ = 2
and degree D" = ds +dy = (2d — j)/6 + j/2 = (d + j)/3; moreover, the dimension of V" is
K" =1. Since (Q3,0) % (Q4, Wy), we have:

a = dim Ext'((Qa, Wa), (Q3,0)) = Ca3 =
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= n3n4(g— 1) —dgng + dgns + kads — k4n3(g— 1) =
=(g—1)—ds+ditds—(9—1)=ds=j/2.

By the same computation we get that

¢ =dim Extl((Q4, W4),(Q1,0)) = j/2.

Since (E”, V") is a non-split extension of (Q4, Wy) by (Q3,0), then

Hom((E", V"), (Q:,0)) = 0 for i = 1,2, 3.

Therefore, we have that

b = dim Ext'((E”,V"),(Q1,0)) =
= nlN”(g — 1) — leN + D”Tll + K”dl — K”?”Ll(g — 1) =
=2(g—1)—(2d—-j)/34+(d+7)/3+2d-j)/6—(9—1)=g—1+j/2.

By the same computation we get that

d = dim Ext'((E",V"),(Q3,0)) =g — 1+ j/2.

So each invariant can only assume one value. From the point of view of Hodge-Deligne
polynomials, we can ignore the indices ¢ and j of proposition [7.5.1] so we can assume that we
have the following description.

e U, = G3 x G4 and there is a projective bundle R, over it with fibers isomorphic to
Pe—1 = PI/2-1 from the point of view of Hodge-Deligne polynomials we can assume
that U, = G3 x G4 x Pi/2-1.

e from the point of view of Hodge-Deligne polynomials we can assume that Ugpcq =
(G1 X G~ Aj3) x Gy x Pi/2=1. there sequences of fibrations for [ = 1,2, 3:

where:
— ¢! has fibers isomorphic to P9=2+3/2 Pi/2-1 91 has fibers isomorphic to P9=2+7/2
]Paj/2—2.
?
— ¢? has fibers isomorphic to P9=2+7/2 \ Pi/2-1 2 has fibers isomorphic to P7/2-2;

— ¢ has fibers isomorphic to P7/2=1 93 has fibers isomorphic to P9=213/2 \ Pi/2-2,
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The (E,V)’s we are interested in are parametrized by the scheme R} be JUIR2, 1IR3, .
In this case
Gy =G3=J%D5C G, =G1,5/2,1).

So we get the polynomial

p{?ﬁzd = H’D(Ré,b,c,d) + HD(R;b,c,d) + HD(Rg,b,c,d) =
= (HD(G1)>~HD(G1))HD(Go)HD (B>~ 1) {HD(PI /2 P/~ )y D(p9~2+5/2 \pI/2-2) ¢
—l—HD(Pg_2+j/2 N Pj/Q_l),HD(]P;j/Q—Q) + HD(]P)j/Q—l)rHD(PQ—Q—i—j/Q ~ ]P)j/?—Q)} _

(1 +ux)9(1+ m:)g:c_j/Q'
(1 —-2)(1 —uvx)

= (1 u)*(1+0)(1+w)?(1 + ) — 1) coeft

LW (pup(pa-249/2)2 — (92 HD(B3/22)) =
(1 +ux)9(1 + vx)ga:_j/Q_
(1—2)(1 —uvx)

= (14 u)?(1+ 0)?((1+w?(L+ ) — 1) coeff

1—uv (1 —uv)? B (1 —uv)?

Also in this case, if j = 0, then we get that the polynomial is zero.

(3b) Let us suppose that (Q;,0) % (Q;,0) for all i # j € {1,2,3}. Then we can apply
proposition In this case we need to compute the invariants a,b,c,d,e. Also in this

case, we denote by (E”, V") any non-split extension of (Q4, W) by (Q3,0); again we have
(N", D", K"y = (2,(d+7)/3,1). Since (Q;,0) % (Q4, Wy) for i = 1,2, 3, we have as before

a = dlm Eth((Q4, W4>7 (Q370)) = .7/27
¢ =dim Ext'((Q4, Wa), (Q1,0)) = j/2,
e = dim Ext'((Q4, Wa), (Q2,0)) = j/2.

Moreover, as before we get also:

b = dim Ext'((E",V"),(Q1,0)) =g — 14 j/2,
d = dim Ext'((E",V"),(Q2,0)) =g — 1+ 7j/2.
So each invariant can only assume one value. From the point of view of Hodge-Deligne

polynomials, we can ignore the indices ¢ and j of that proposition, so we can assume that we
have the following description.

e U, = G3 x G4 and there is a projective bundle ¢, : R, — U, with fibers isomorphic
to P! = PI/2-1. from the point of view of Hodge-Deligne polynomials we can assume
that R, = Gg x G4 X Pi/2-1,
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e The scheme Ugp ¢ g coincides with

{((Qth)a (QQ,WQ)a (E”, V”)) S Gl X G2 X Ra s.t.
(Qb Wl) ¢ @a(Eua V”)Vl =12, (le Wl) ;ﬁ (Q27W2)}

where @, is the composition of ¢, with the projection to Gs3. From the point of view of
Hodge-Deligne polynomials we can assume that Uy p 4 = (G1XGaxG3\A)xGy xpe—1,
where A is the “big” diagonal of G; x Ga X G3 = G1 X G1 X G1. There are 2 schemes
and 2 sequences of fibrations for [ = 1,2

l 13
I ¢ I 0
Ra,b,c,d,e 7 Aa,b,c,d,e Ua,b,c,d,e
where:

— both ¢! and #' have fibers isomorphic to P9~2+7/2 \ Pi/2-1,
— ¢? has fibers isomorphic to P9=2+7/2 \ Pi/2-1 2 has fibers isomorphic to P7/2~1;
The (E,V)’s we are interested in are parametrized by the schemes described in (b) and
(¢) in proposition (case (a) doesn’t occur since there are no choices of (b, c) < (d,e)). So

the coherent systems (E,V)’s we are interested in are parametrized by the pair of schemes
R(ll,b,qb,c/Zz and R? Also in this case

a,b,c,b,c”

GL =Gy =Gy =J%95C G, =G@1,j/2,1).

Moreover, we have that A ~ Ag II Ay IT Ag IT Ag, where the A;’s are as in (15.5). Now
Ag~Grand A; ~ Gy x Gy~ A’ for i = 1,2,3, where A’ is the diagonal of G; x Gy, so

HD(A) = HD(G4) + 3(HD(G1)? — HD(G1)) =
=HD(G1)(HD(G1) —2) = (1 +u)!(1 4+ v)?((1 +u)! (1 +v)? —2).

So we get that

HD(R?,.p0) = HD(G1 x G1 x Gi ~ AYHD(G4)HD(PI/*71).
HD(PI~2HI/2  PI Yy p(PI/2L) =
(1 + uz)9(1 4 va)9z—7/?
(1 —2)(1 —uvx)
(1= (op/)? (o2 — (wo) 137
(1 —uv)? 1—uv ’
Now let us consider R}l’b’ b, ./Z3. By proposition from the point of view of Hodge-

Deligne polynomials we can assume that R, ., ./Zs is isomorphic to (M/Z2) x Gy x PI/271,

= (1 u)*(1+0)(1+w)?(1 +v)° — 2) coeft

where M is the scheme
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M := (G x G X Gz~ A) x (PI~2H/2  pi/2—1)2

and where Zy acts on M by permutations on G1 x G and on (P9=213/2  PI/2=1)2 Let us

define the scheme

M' =Gy x (PI~2+1/2 (pI/21,

By construction the action of Zs is trivial on AgII A1 ~ G x G1 and it exchanges As and
Asz. Then

M/Zy = (M’ % M’ x G1>/Zg - ((Ao 1A x (PI=2+/2  Pi/2=1)2) 17,11
(A 1L A x (B2 S PI271)2) 2, ) =
_ (M’ « M’)/Zg % Gy~ (Ao 1A x (PI=2+/2  Pi/2=1)2 7, 11
IT Ay x (PI~2+3/2 ij/2—1>2)_
Now

HD(M') = HD(G1) x HD(PI—>H/2 (P21 =

1—uv

= (1+w?(1+ )’

Therefore, by [MOVG2], lemma 2.6] we get the following polynomial:

<(1 * U)29(1 + 0)29 ((uv)j/2(1—_(ul':2;]21+j/2>2+

HD((M' x M"))Zs) =

N

+(1 —u?)9(1 —v?)?

(uv)? — (uw)?9=2+
1 — (uv)? > '

Moreover, we can compute

HD((PI~2H9/2 (P22 7,) =

1 ((uv)j/Q — (uv)9—1+j/2)2 (uv)? — (uv)29—2+j
2 (1 —uv)? + 1= (w)? .

2

So we get, that:

((uv)jﬂ _ (uv)g—1+j/2)2
(1 —uv)?

vaﬂm>:§<u+w%u+w% .

+ (11— u2)9(1 — qﬂ)g (uwjl__(zfv);g2+j> (14 u)?(1 +v)9+
woV/2 — (w9112 (yo) — (ww)29-2+i
—%(1 +u)29(1 + )% <(( ) a _( uZ)Q L )1_((uv))2 ) +
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((wv)’? — (uv)9~"+3/2)?

—(14+u)f(1+v)?((1+u)(1+v)? = 1) (1 — uv)?

So we conclude that

HD(RL .o p.e/L2) = HD(M/Zy)HD(G1)HD(PI/>71) =

1 (w12 = (uw)o— 149

= {2 <(1+u)29(1+v)29 1= w)? +

g (wv)) — (uv)?9~2+

+ (1 —u?9(1 — %)

) (1+u)?(14+v)7+

1 — (uv)?
uv)i/? — (up)9—113/2)2 wv)d — (uv)?9—2+i
_;<1+u)29<1+v>29<<< kG i S O +J>+

—(14+uw)f1+v)(1+u)?(1+v)?—1)

(w0)'"” — (wo)o=1 /%) } |
(1 —uw)?

g 9p—3i/2 11— /2
- cooff (1 + ux)9(1 +vz)dx 1= (w) ‘
0 (1 —2)(1 — uvx) 1—wv

So we get the polynomial:

i=62d
pjlg o= HD(R}z,b,c,b,c/Zz) + /HD(Rg,b,c,b,c) =

wv)?/? — (uw)9—1+3/2)2
- {; <<1+u>29<1+u>29“ po

+ (1 =) (1= v?) (“”)jl__(fjjj?ﬂ) (1 4+ w)? (1 + )7+
w2 — (yu)9—113/2)2 ) — (up)29-2+
_%(1 + )29 (1 4 v)% <(( )’ i _( ug; ) n ( )31 _((UU));’ J) .

—1+w)Q+v)((14+uw)f(1+v) —1)

(o = (uw)?~1912)2 } |
(1 —uv)?

- cooff (1 + uz)9(1 4 vz)9z—I/? 1 (uv)i/?
0 (1—2)(1 —uvx) 1—wuv

(1 +ux)I(1+ v:c)gx_j/z'

(1 —2)(1 —uvx)

e R D e )
(1 —uv)? 1—uv

g1 — (uv)i/? (1 + uz)9(1 + vx)9z=/?
(1 —uv)? P (1—z)(1 —uvz)

((uv)j/Q _ (uv)9—1+j/2)2

+(1+u)?(1+v)?((1+w)?(1+v)? - 2) coeff

— (1+w)?(1+v)

4 (1 . u2)g(1 _ ,U2)g (uv)j - (U’U)

29—2+j

((1 +u)?(1 +v)%

N

{ 1 —uv 14+ uv

)
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_%(1 +u)(1+0)? (((uv)]ﬂ — ()R () (uv)29_2+j> +

1—uv 14+ wv

((uv)jﬂ _ (uv)g—lﬂ‘/?)?

—(1+w)?(1+v)? — 1) () .
1+ w1+ o) — 2L (u0)/?) - (gui)i/j  (wv)9m1+/2) } )
gﬂ (1+Ux)9(1+vx)g$—j/2.

= (1+u)f(1+v) ((u0)?/? — (u0)?~4912) coeft

(1 — uv)? @ (1—2)(1 —uvz)

‘ { 1 —1uv [((uv)j/2 — (uw)9~11972) <;(1 +u)?(1 + )% — %(1 +u)?(1+v)7+

S W0 L) (L (L0 - DL - ) )]+

(uv)?/? + (uv)9—1+3/2
14+ uv

B(l —u?)9(1 —0v?)9 — %(1 +u)?(1+ v)g] } =

— /2 ‘ ) g 9p—3/2
g1 — (w) (w02 — (uv)9=4972) coeff (1 4 ux)?(1 + va)a™7/=

= (1+u)9(1+1}) m 20 (1 —I)(l —UU:U)

' {1 —luv [;(W)j/? — ()™ (1 4+ w)? (1 +0)7 = 1)((1+u)(1+0)7 —2) +
(4 0 02 = 21 (u0))] +

(uv)i/? 4 (uw)9—1+3/2 , , ) .
2(1 + uv) (1 +u)?(1+0)?((1 = u)(1 —v) —1)}.

Also in this case, if j = 0, then we get that the polynomial is zero.

(3c) Let us suppose that (Q1,0) ~ (Q2,0) % (Q3,0). Then we can apply proposition
7.5.3] In this case we need to compute the invariants a, b, c. Also in this case we get

a = dim Ext'((Q4, Wa), (Q3,0)) = j/2,
b= dim Ext'((E",V"),(Q1,0)) =g —1+j/2,

c = dim Extl((Q4, Wy), (Q1,0)) = j/2,

8o each invariant can only assume one value. From the point of view of Hodge-Deligne poly-
nomials, we can ignore the indices ¢ and j of that proposition, so we can assume that we have
the following description.

e U, = G3 x G4 and there is a projective bundle ¢, : R, — U, with fibers isomorphic to
pe-1 — ]P)j/2—1;
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o Uyp . is the set

{(Q1,0), (B, V") € Gy x Ra st (@1,0) # 2o (E", V")),

where §, is the composition of ¢, with the projection to G3. From the point of view of
Hodge-Deligne polynomials we can assume that Ugp . = (G1 X G\ A) x Gy X Pj/2_1,
where A is the diagonal of G; x G3 = G1 x Gy. The (E,V)’s we are interested in
are parametrized by a scheme R, .. Such a scheme comes with a fibration Rgp. —
Uqp,c with fibers isomorphic to Grass(2,b) \ Grass(2,c) = Grass(2,g — 1+ j/2)
Grass(2,7/2).

Then we get the polynomial

PQOEGM =HD(Rap.c) = (HD(G1)2 — HD(G1)) x HD(Gy4) x HD(]P)_]'/Qfl)'
{HD(Grass(2,9 — 1+ j/2) — HD(Grass(2,7/2)} =

B (1+uz)9(1+vz)9z7/2 1 — (uv)i/?
=1+u)fd14+v)9(1+u)(l+0v)— 1)C%%ff =21 — avr) S
[0 ()2 (0 )92 — (1 /(1 ()
(1 —wv)(1 — (uv)?) )

(3d) Let us suppose that (Q1,0) ~ (Q2,0) ~ (Q3,0). Then we can apply proposition
7.5.4. In this case the invariants a,b and the scheme R, are as in (3c). Moreover, the
scheme U, coincides with R, and the (F,V)’s we are interested in are parametrized by a
scheme R,;. Such a scheme comes with a fibration R,;, — U, with fibers isomorphic to
Grass(2,b) ~ Grass(2,a — 1) = Grass(2,g — 1+ j/2) ~ Grass(2,j/2 —1). Then we get the
polynomial

P57 = HD(R, ) = HD(G1)HD(Gy) x HD(PI/>71).
(HD(Grass(2,9g — 1+ j/2)) — HD(Grass(2,j/2 — 1)) =

(14 uz)9(1 4 vz)9z /2 1 — (w)i/?
— g g . .
L+ w1 +0) ch)c%ﬁ (1—2)(1 —uvx) 1—wv

[ (= () 2921 — g 1972) — (1 — ()21 = (a2 )
(1 —wv)(1 — (uv)?) ’

(4) Canonical filtration of type (1,2,1). In this situation we need to consider the
following subcases:

(a) (Q1,0) >~ (Q2,0) # (Q3,0);
(b) (Qi,0) # (Qj,0) for all j # j € {1,2,3};
(c) (@1,0) % (Q2,0) ~ (Qs3,0);
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(d) (@Q1,0) ~ (Q2,0) # (Q3,0).

As we said in remark [12.2.1| we are able to describe completely only case (a).

(4a) If we suppose that (Q1,0) ~ (Q2,0) % (Q3,0), then we can apply proposition [7.6.1]
In this case we need to compute the invariants a, b, c,d,e. In order to do that, first of all let

us fix any pair of non-split extensions of the form
0= (Q4,0) = (Bui, Vai) — (Qa, Wy) — 0

for ¢ = 2,3 and let us denote by

0— (Q2,0) ® (Q3,0) = (E", V") = (Qq, Wy) = 0

their sum. Then for ¢ = 2,3 the coherent system (Fy;, Vy;) has rank Ny = 2, degree Dy; =
(d+ 7)/3 and K4; = 1. Moreover, (E”,V") is a coherent system of rank N” = 3, degree
D" =dy+ds+dy = (4d+7)/6 and with K” = 1. Since (Q2,0) and (Qs3,0) are not isomorphic
to (Q4, Wy), as in case (3) we have that:

a = dim Eth((Q47 W4>7 (Q270)) = .7/2a

b=dim Extl((Q4, W4),(Q3,0)) = j/2.

Moreover,

¢ = dim Ext'(E", V"), (Q2,0)) =
= 7’L2N”(g — 1) — dQN” + D”?’LQ + K”dg — K'/ng(g — 1) =
200 —j 4d+j 2d—j
2 + 6 + 6

=3(g—1) -

In addition,

(9—1)=29—-2+j/2.

d = dim Ext'((Es2, Va2), (Q2,0)) =

=naNg2(g — 1) — daNgo + Dyong + Kyods — Kgonoe(g — 1) =

2 —j d+j 2d—3j ,
=2g-D- gt gt g =g-1+j/2

and analogously,

e = dim Eth((E43, V43), (Q2, 0)) =g—1 +j/2.

So each invariant can assume only one value. By proposition we can therefore suppose
that we have the following description.

o U3:G2xG4, UEZGgXGz;, Ua,b:Gg><G3><G4andVayl,:(GQXG3\A)><G4;
there is a fibration R, — V, with fibers isomorphic to Po—l % po-1 = (Pj/z_l)Q;
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® Uypede = Rap and there is a fibration Rypcde —+ Uapede With fibers isomorphic to
]P>c—1 ~ Pd—i—e—a—l — ]P)Qg—3+j/2 ~ P29—3+j/2 - .

Therefore we have proved that there are no (E,V)’s of type (4,d, 1) with «(j)-canonical

filtration of type (1,2, 1) and graded (Q2, 0)®(Q2,0)D(Q3,0)D(Q4, Wa) with (Q2,0) % (Qs3,0).
So we get simply

P = HD(Rypcae) = HD(@) = 0.

(4b)-(4c)-(4d) Currently we are not able to compute the polynomials for these 3 cases.

We name such unknown polynomials by p]§62d, p%fﬁm and p%fﬁw respectively.

Remark 15.1.1. The previous numerical computations together with lemma [12.2.4] actually
suggest that also the scheme that should be considered in (4b) is the empty scheme and that
consequently also p%fﬁw should be equal to zero. Currently, we cannot say anything about
(4c) and (4d).

15.2 The moduli spaces G~ (a(j);4,d,1)

Also in this case the length r of the filtration of any object (F,V) in G~ («a(j);4,d,1) can
only be equal to 2,3 or 4. So let us consider the 3 different cases.

15.2.1 Caser =2

By applying lemma [1.0.6] we get that any (E,V) that belongs to G*(a(j);4,d,1) with
length of the a.-JHF equal to 2 sits in a non-split exact sequence:

0—=(Q1,W1) = (E,V) = (Q2,W2) = 0 (15.7)

with conditions (a’)-(b’). Then condition (a’) implies that ko = 0, so k; = 1, but a priori ns
can be either equal to 1,2 or 3.

(1) If ny = 3, then ny = 1; since juq(;)(E£,V) = d/3 — j/6, then condition (b’) implies
that do = d — j/2. Therefore, this case is possible only if j = 0 mod 2. If we assume that
condition, then both dy = d — j/2 and d; = j/2 are non-negative integers. Since r = 2, we
must impose that both (Q1, W7) and (Q2, W2) = (Q2,0) are a(j)-stable. Since there are no
critical values for (1,d;,1) and (3,dz,0), this simply means that we are considering all the
pairs (Q1, W1), (Q2,0) such that:

(Ql,Wl) c G(l,j/2, 1) = Gl, (QQ,O) S MS(3,d—j/2) = GQ.

Since HY, = H2, = 0, we get

dim Eth((QQ, 0), (Ql, Wl)) =Cy = nlng(g — 1) —ding +dong =
=3(g—1)—3j/24+d—j/2=3g—-3+d—2j.
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So for every critical value a(j) such that j = 0 mod 2 we get a contribution to G~ (a(j); 4,
d, 1) by a projective bundle over G1 x Go with fiber P3974t4=2/ So we get the polynomial:

_ 1— 39—3+d—2j 1 9(1 9p—3/2
G50 DM (3, d — j/2)) ) coofr 1H U2V + va)i

1—wuv 0 (1 —2)(1 —uvz)

Now we recall that we are assuming that j is even, so:
e d—j/2=0mod 3 if and only if j = 2d mod 6;
e d—j/2# 0 mod 3 if and only if j =2d 4 2 mod 6 or j = 2d + 4 mod 6.

In the first case, we don’t know an explicit formula for the Hodge-Deligne polynomial of
M?#(3,d — j/2); in the second case we have an explicit formula, as described in chapter (8| (and
such a formula does not depend on j or d). We will denote the corresponding 2 polynomials
by HD(M (3,7 =¢ 2d)) and HD(M?3(3,j =¢ 2d + 2)) = HD(M?3(3,j =¢ 2d + 4)) respectively.

62 i=62d+2 j=¢2d+4

According to that notation, we denote by q{; 4 and q q the corresponding

polynomials.

(2) If ng = 2, then n; = 2. Moreover, condition (b’) implies that do = (2d — 7)/3, so
this case is possible only if j = 2d mod 3, that is j € {2d,2d + 3}10d 6- If we assume that
condition, then both ds and diy = d — d; = (d + j)/3 are non-negative integers.

Now we recall that both (Q1, W1) and (Q2,0) must be strictly a(j)-stable (otherwise, the
length of the Jordan-Hélder filtration would be bigger than 2). So we need to consider 2 cases:

(a) if 7 =2d mod 6, then do = (2d — j)/3 is even, so we are considering

2d — j
3

(Q2,0) € M*® (2, ) = M®(2,even) =: Go;
(b) if j = 2d + 3 mod 6, then dy = (2d — j)/3 is odd, so we are considering

2d — j
3

(Q2,0) € M® <2, > = M?*(2,0dd) = M*(2,0dd) =: G5.

Analogously, (Q1, W1) must be an object of the moduli space G®(a(5); 2, (d+5)/3,1). Such
a scheme is not empty if and only if 0 < «(j) < (d + 7)/3, but this condition is automatically
satisfied by definition of «(j) for all j > 0 (for j = 0 the moduli space of semistable objects is
non-empty, while the stable locus is empty). Then we have to verify if a(j) is critical for the
triple (2, (d +5)/3,1). According to the computations of chapter a(j) is critical for such
a triple if and only if a(j) = (d + j)/3 — 2k for some 0 < k < (d + j)/6. So this gives:

j = 2k.
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So «(j) is critical for (2, (d+7)/3,1) if and ouly if j = 2k for some 0 < k < (d+7)/6. If we
set j = 2k, this is equivalent to imposing 0 < j < (d+ j)/3, that is equivalent to 0 < j < d/2.
These are exactly the conditions we already put on j, so () is critical for (2, (d + 7)/3,1) if
and only if j is any admissible value (i.e. 0 < j < d/2) such that j = 0 mod 2. Now we have
to distinguish 2 cases as follows.

(i) If j = 0 mod 2, then (d — 2j)/3 is a critical value for (2,(d + j)/3,1). In particular, if
we write k := j/2 € Ny, then we can write (d —25)/3 = (d + 5)/3 — 2k and we need to
consider

d+j d+j
(Qlawl) €G® (;_] - 2]{;’27 %7 ]-) = Gl-

According to corollary [13.3.2] with d replaced by (d + j)/3 and k replaced by j/2, we
have that

(14+u)?(1+v)9 - (14 ux)?(1 + vax)?
1—wuv %0 (1—2)(1 —wz)

HD(G1) =

(uv)j/2x7j/2 B (U’l})g+1+(d72j)/3$17'j/2

1= a(uw) ! 1 — z(uv)?

— 32

(ii) If j =1 mod 2, then we can define k := (j — 1)/2 € Ny, so that

d=2j _d+j o 4
3 3

We recall that the critical values of (2, (d+7)/3,1) are of the form (d+ j)/3 — 2k, so we
need to consider

—2k—-1;2, —,1
) 4y 3 ’

(Q1, W) e G° (

d+j d+j /
S . .
=G (3 — 2k —¢;2, 5 ,1) =:G.

d+j d+j )

According to theorem [13.3.1) with d replaced by (d + j)/3 and k replaced by (j — 1)/2,
we have that

(14+u)9(1+v)9 oeff (14 uz)9(1 + vx)?
1—wuv 2 (1—2)(1—uvz)

HD(G,) =

(ufu)(j_l)/Qx(l_j)/Q (uv)g+(d_2j)/3aj(1_j)/2
. 1—z(w)t 1 — z(uv)?
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We recall that we are under the hypothesis j € {2d,2d 4+ 3}1,0q4 6. Therefore, under that
condition we have j = 0 mod 2 if and only if j = 2d mod 6 and j = 1 mod 2 if and only if
Jj =2d+ 3 mod 6. So cases (a) and (b) match with the cases (i) and (ii) respectively.

Since HY, = H2, = 0 for all values of j, we get:

dim Eth((QQ, 0), (Ql, Wl)) =(Cy = nan(g — 1) —ding + dony =

So for every critical value a(j) such that j = 2d mod 3, we get a contribution to G~ (a(j); 4,
d,1) by:

e a projective bundle over G; x Go with fiber P4—5+2d=4)/3 if ; = 24 mod 6;
e a projective bundle over G x G} with the same fiber if j = 2d + 3 mod 6;
So we get, the polynomials

G 2(1— uv)(ll — (uv)?) (2(1 +u)? (14 0)? (1 + u0)? (1 + uv’)+

—(1+u)?9 (1 +0)2(1 + 209 9T —u20?) — (1 —u?)?(1 —v?)9(1 — uv)2>~

(A +w)I(1+wv)? (14 uz)9(1 +vx)?

ft
1—wuv %0 (1 —2)(1 —uvx)
' (ww)i/ 25312 - (ww)91+(d=29)/35:1-3/2 I 1 — (up)lo—1+(2d-1))/3
1—z(uv)~! 1 — z(uv)? 1—wuv

and

j=e2d+3 _ (L+u)9(1+0)9(1+ w?0)9(1 +uv?)? — (uv)9(1 +u)* (1 4 v)*
© (1 —wv)(1 — (uv)?)
(I+u)9(1+wv)9 (14 u)9(1 + vx)?

' 1—wuv C(;%ﬁ (1—2)(1 —uvx)
' 1—z(w)t 1 — z(uv)? ' 1—uv

according to the 2 possible values of j modulo 6.

(3) If ne = 1, then ny = 3. Moreover, condition (b’) implies that do = (2d — 5)/6, so
this case is possible only if j = 2d mod 6. If we assume that condition, then both dy and
diy = d—d; = (4d + j)/6 are non-negative integers.

Now both (Q1,W1) and (Q2,0) must be strictly «(j)-stable. For (Q2,0), this simply
amounts to considering all possible objects of J(2¢=7)/6 —=: Gy. On the other hand, (Q1, W)
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must be an object of the moduli space G*(a(j);3, (4d + j)/6,1). Such a scheme is non-
empty if and only if a(j) < (4d + j)/12, but this condition is automatically satisfied by
definition of a(j) for all j > 0 (if j = 0, the semistable locus is non-empty, while the stable
locus is empty). Then we have to verify if a(j) is critical for the triple (3, (4d + j)/6,1).
According to the computations of chapter a(j) is critical for such a triple if and only if
a(j) =d1/2—3k/2 = (4d+ j5)/12 — 3k/2 for some 0 < k < d3/3 = (4d + j)/18. So this gives:

d—2j . 4d+j 3k 4d+j— 18k
3 =TT e T
So a(y) is critical for (3,dy, 1) if and only if j = 2k for some 0 < k < (4d+j)/18. If we set
J := 2k, this is equivalent to imposing 0 < j < (4d + j)/9. These conditions are equivalent to

j = 2k.

0 < j < d/2, that are exactly the conditions we already put on j. Therefore, a(5) is critical for
(3,dy1,1) if and only if j is any admissible value (i.e. 0 < j < d/2) such that j = 0 mod 2. But
we recall that the case we are considering is possible only when j = 2d mod 6, that implies
j = 0 mod 2. Therefore, when this case is possible «(j) is always critical for (3,dy,1). Then
if we define k := j/2 € Ny, we need to consider

(Qu W) € G° (; <4d6“ —3k> .3, 4d6+],1> _.q,

Now we recall that according to chapter we have 2 different formulae for the Hodge-
Deligne polynomial of G*((d' — 3k’)/2;3,d’, 1) depending on d’ — k’ being odd or even. In our
case d = (4d + j)/6 and k' = j/2, so

6 2 6 3
Since in this case we are assuming j = 2d mod 6, then d' — k' is even, so we can apply
corollary [14.3.7| with d replaced by (4d + j)/6 and k replaced by j/2 and we get

g ddti j_4d-2j 2d—j

HD(G1) = (1 4+ u)?(1 4 v)9-
(14 uz)9(1 +vx)? { (1 4+ u20)9(1 + uww?)9 — (uwv)9(1 + u)9(1 + v)?
2 (1—2)(1 —uvx) (1 —uv)2(1 — (uwv)?)

_ (uv)iz=1/2 B (uw)20t14(2d=47)/3,1-3/2 A (uwv)97 1 (1 +u)9(1 + v)?
1— (uv)2z 1 — (uv)3z (1 —uv)?(1 4 uwv)

(ww)i+lg—9/2 (uw) 204+ CA=47)/3,23/2 (1 1 ) (uw)9 1+ (@d=5)/61-j/2
. <(1 — (uv)22)(1 — (wv)~1z) + (1— (w)32)(1 — (w)2z) (1 — (w)~12)(1 — (uv)2z)

—j/2> (I+w)?(1+0v)?
—uvx T —w)?

(w232 (up)ot B B2
1— (w) 'z 1 — (uv)?z — '

Now for all values of j we have that H9; = H3, = 0, so:

dim Ext'((Q2,0), (Q1,W1)) = Ca1 = nina(g — 1) — ding + dany =
=3(g—1)— 2% 4 200 — 35 34 422,



15.2 The moduli spaces G~ (a(j);4,d, 1) 351

Then we will get a projective bundle over G1 x Go with fibers P39—4+(d=7)/3 S5 we get
the polynomial

g~ = HD(G1JHD(Go)HD(PY~ 2013 =

1— (uv)3g73+(d72j)/3

= (1 +u)?!(1+0v)? HD(Gh) =

1—wv

% 1 — (uv)3g73+(d72j)/3‘

= (1+u)(1+v) —

'Cox%ﬁ (1—2)(1 —uvx)

_ (uv)iz=9/2 B (uw)20t14(2d=47)/3,1-3/2 A (uwv)971(1 +u)9(1 +v)?
1— (uww) 2z 1— (uwv)3z (1 —uw)?(1 4 o)

(1 4+ux)d(1+vz)9 [ (1+u*0)9(1 +uv?)9 — (uv)9(1 + u)9(1 + v)9
| { (1= w0)2(1 = (uv)?) |

(wo)i g9/ (u)29H4H@A=19)/332-3/2 (1 | ) ()91 (2d-9) /613 /2
. ((1 — (uwv)~22)(1 — (uv)~12) + (1 — (wv)3z)(1 — (wv)22) (1 — (uwv)~z)(1 — (uv)x)

_uvxj/2> _ (L +w)?(L +v)f

(1 —uv)? 1—(w)lz 1— (uwv)?x

(wv)i/2a=i/2 (up)s =33 1-5/2 - /2] }

15.2.2 Caser =3

In this case the graded of (E,V) is necessarily made of 3 objects of the form (Q, W1),
(Q2,0), (Q3,0) (a priori not necessarily in this order) where 2 of the @;’s are line bundles and
one is a vector bundle of rank 2. So we need to consider 3 possibilities.

(a) If @ is the vector bundle of rank 2, then necessarily Q2 and @3 are line bundles of the
same degree do = d3 = (2d — j)/6 and Q)1 has degree d; = (d + j)/3.

(b) If @y is a line bundle, then we get that d; = j/2; if Q2 is a line bundle, then it has degree
dy = (2d — j)/6 and Q3 is a vector bundle of rank 2 and degree d3 = (2d — j)/3.

(c¢) If @ is a line bundle, then we get that d; = j/2; if Q3 is a line bundle, then it has degree
d3 = (2d — j)/6 and Q2 is a vector bundle of rank 2 and degree dy = (2d — 5)/3.

Therefore, all the 3 cases are possible only when j = 2d mod 6. For each case we have to
consider 2 different subcases according to the various a(j)-canonical filtrations.

(1) Unique a(j)-Jordan-Hoélder filtration. If the filtration is unique, we need to fix
the order of the 3 objects of the graded. The object (Q1, W1) must be necessarily the first ob-
ject of the graded, otherwise it destabilizes (E, V') for a(j)~. Therefore we have the following
possibilities.

(1a) Let us suppose that the graded is given by (Q1, W1) @ (Q2,0) & (Q3,0) with:
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e ()2 and Q3 both line bundles of degree dy = ds = (2d — j)/6;

e (Q1,W7) with Q1 vector bundle of rank 2 and degree dy = (d + j)/3.

In this case Hom ((Q1, W1), (Q2,0)) = 0 because both objects are a.-stable with the same
slope and they are not isomorphic. Then we have to consider two subcases as follows

(La-i) If we suppose that (Q2,0) % (Qs3,0), then we can apply proposition in order
to parametrize all the corresponding (E,V)’s. In this case Hom((Q3,0), (Q2,0)) = 0, so the

invariant a of that proposition can only assume the value

a = dim Eth((Qg,O), (Q2,0)) = C32 =ngnz(g — 1) —danz +dsna =g — 1

on the set U, = Go x G3 ~ As3. So we have a projective bundle R, over U, with fibers
isomorphic to P! = P9=2_ If we write E” = (E”,0) for any non-split extension of Q3 by Qa,
we get that it is a vector bundle of rank N” = 2 and degree D" = 2dy = (2d —j)/3. Moreover,
Ext?((E",0),(Q1,W1)) = 0 because k; = 1 and also Hom(—, —) = 0; therefore we get that
the invariant b can assume only the value:

b = dim Ext'((E",V"),(Q1,W1)) = miN"(g — 1) —dyN" + D"n; =

d+j 2d—j 2d — 4j
—4(g—1)—2 J?:‘7+2 3‘7:4g—4—|— ..

3
Moreover, the invariant ¢ can only assume the value:

¢ = dim Eth((Qg,,O), (Ql, Wl)) = C31 = nlng(g — 1) — d1n3 + d3n1 =

d+j 2d—j
B T

Therefore, we get that U,p. = G1 X R, and we have a bundle R, . over U,y . with
fibers isomorphic to Pb—1 \ Pe~1 = PAg—5+(2d—45)/3 { p29—3+(d—21)/3 t{hat parametrizes all the
(E,V)’s under consideration. We recall that Gy = G3 = J(@=2)/6C. Since j = 2d mod 6,
then we can define k := j/2 € Ny; since 0 < j < d/2, then we get that 0 < k < (d + j)/6. So

that we are considering all the (Q1, W1)’s in the scheme
d—2j . d+j d+j d+j
G, =G" 2, —= 1) =G —= —2k;2, —=,1].
1 ( 3 y Ly 3 ) ) < 3 ) & 3 )

Then formula ([15.3) gives the Hodge-Deligne polynomial of G;. Then we get the Hodge-
Deligne polynomial

=29 — 2+ (d—2j)/3.

qA{EGQd — HD(Ra,b,c) _ (HD(P4975+(2d74j)/3) o HD(P2g73+(d72j)/3)>foD(Gl)erD(Ra) —

— (HD(P4g_5+(2d_4‘j)/3) _ HD(P29_3+(d_2j)/3))HD(]P)Q_2)'

HD(G1) - HD(G2) (HD(G2) — 1) =
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(uv)2972+(d72j)/3 _ (uv)4gf4+(2df4j)/3 1— (uwgfl (1 +u)9(1 + U)g

1—wv 1—uv 1 —uv

g g 3/25-3/2 g+(d=27)/34+14,1-3/2 ,
cooff (14 ux)?(1 +ox)? | (w0)’ "z _ (w) x _ il
2 (1—2)(1—uvz) 1 —z(uv)~t 1 — z(uv)?

(14 u)!(1+0)!((1T+u)?!(1+0)? —1).

(1la-ii) Let us suppose that (Q2,0) ~ (Q3,0). Since ko = 0, then we get that Ext?((Qs,0),
(Q1,W1)) = 0. So we can apply proposition in order to parametrize all the corresponding
(E,V)’s. In this case we need to compute the invariants:

a = dim Ext'((@3,0),(Q2,0)) = Ca2 +1 =g

and

b = dim Ext'((Q3,0), (Q1, W1)) = Cs, = 29 — 2+ (d — 25)/3.

Therefore, we get a projective bundle R, over Gy = G3 with fibers isomorphic to P9~ 1;
the (E,V)’s we are interested in are parametrized by a bundle R, over G X R, with fibers
isomorphic to C29-3+(d=21)/3  p29-3+(d=2j)/3 T this case the schemes G; and Gs are as in

case (la-i), so we get the polynomial:

1= = HD(G2)HD(G1)HD(C9 3+ @=20)/3 )y p(p2o=3+CA-0)/3)yp(po—1) =

(I+u)9(1+wv)9 oeff (1 4+ ux)9(1 +vx)?

= (1+u)9(1+v)? 1~ w0 2 (1—2)(1— uvx) .

(w0)/253/2 (u)Hd=20) /3415152

1= 2(w) T 1 — z(uv)?

— 2.

()33 L = (w2 1 — (uv)e
1—uw 1—wv

(1b) Let us suppose that the graded is given by (Q1, W1) & (Q2,0) & (Q3,0) where:

e Q1 is a line bundle of degree dy = j/2;
e (- is a line bundle of degree ds = (2d — 5)/6;

e (O3 is a vector bundle of rank 2 and degree ds = (2d — 7)/3.

Since @)1 is a line bundle and Q3 is a vector bundle of rank 2, then these 2 coherent systems
cannot be isomorphic; since they are both a.-stable, we get that Hom((Qs3,0), (Q2,0)) = 0.
Moreover, we have also that Hom ((Q2,0), (Q1, W1)) = 0 because both objects are a.-stable
with the same slope and they are not isomorphic. Then we can apply proposition in
order to parametrize all the corresponding (E,V)’s. In this case the invariant a can only

assume the value
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a = dim Eth((Qg,O), (QQ,O)) =(C3 = TLQTlg(g — 1) — dong + dgng =
2d—j 2d—3j
=29-1) - =5 +—3
on the set U, = G2 x G3. So we get a projective bundle R, over U, with fibers isomorphic
to P2973. If we write E” = (E”,0) for any extension of Q3 by Q2, we get that N” = 3 and
D" = dy 4 d3 = d — j/2. Moreover, Ext?((E",0),(Q1,W1)) = 0 because k& = 0 and also
Hom(—, —) = 0; therefore we get that the invariant b can assume only the value:

=29 —2

b = dim Ext'((E”,0),(Q1,W1)) = miN"(g — 1) —diN" + D"ny =
=3(g—1)—3j/2+d—j/2=3g—3+d—2j.

Moreover, the invariant ¢ can only assume the value:

¢ = dim Eth((Qg,,O), (Ql, Wl)) = C31 = nlng(g — 1) — d1n3 + d3n1 =
=29 —2—j+(2d—75)/3 =29 —2+ (2d — 45)/3.

Therefore, we get that Uy . = G1 X R, and we get a bundle R, . over Ugyy, . with fibers
isomorphic to PP~ \ Pe—1 = P39—4+d=2 ( P29-3+(2d-4)/3 Now the objects (Q;, W;)’s vary
in the following sets:

(Qh Wl) S Gl == G(17]/27 1)7
(Q2,0) € Gy = JRI=D/OC (Qs,0) € G3 = M3(2, (2d — 5)/3).

Since we are assuming that j = 2d mod 6, then (2d — j)/3 is even, so for the scheme G3
we need to use formula (8.11)). Then we get the Hodge-Deligne polynomial

qé562d — HD(Ra,b,c) _ <7—[D([P’3g_4+d_2j) _ HD(P29—3+(2d_4j)/3))HD(Gl)HD(Ra) =

B (up)29~2+(2d=43)/3 _ (y9)39—3+d~2j cooft (1 + ux)9(1 4 vx)dz—i/?
N 1 —wuv 0 (1—2)(1 —uvx)

HD(P?973) . HD(JP=D/6C) . HD(M?(2, even)) =

(uv)2g72+(2d74j)/3 _ (uv)3gf3+df2j (1 + ua:)g(l + va:)ga:’jm 1— (uv)2g72

= . Coe . .
1—wv 20 (1 —2)(1 —uvx) 1 —uw

1

2(1 — uv)(1 — (uv)?)

(14w (1+v)7-

(2(1 Fu)I(1+0)9(1 + u0)I(1 + uv?)i+

—(14u)2(1 +0)29(1 + 2099 —u?0?) — (1 —u®)9(1 — v?)9(1 — uv)Q).
(1c) Let us suppose that the graded is given by (Q1, W1) @ (Q2,0) & (Q3,0) where:

e ()1 is a line bundle of degree d = j/2;
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e ()2 is a vector bundle of rank 2 and degree dy = (2d — j)/3;

e ()3 is a line bundle of degree d3 = (2d — j)/6.

In this case Hom ((Q2,0), (Q1, W1)) = 0 because both objects are a.-stable with the same
slope and they are not isomorphic. Since ()2 is a line bundle and Qs is a vector bundle of rank 2,
then these 2 coherent systems cannot be isomorphic, therefore we can apply again proposition
in order to parametrize all the corresponding (E, V)’s. Since Hom((Qs3,0), (Q2,0)) =0,
then the invariant a can only assume the value

a = dim Eth((Qg,O), (QQ,O)) =(C3 = ngng(g — 1) — dong + dgng =
2y 1)~ (24— §)/3+ (20— j)/3=2g 2

on the set U, = G2 X G3. So we will get a projective bundle R, over U, with fibers P29-3,
If we write E” = (E”,0) for any non-split extension of Q3 by Q2, we get that N” = 3 and
D" = dy +ds = d — j/2. Moreover, Ext?((E”,0),(Q1,W1)) = 0 because K” = 0 and also
Hom(—, —) = 0; therefore we get that the invariant b can assume only the value:

b = dim Ext!'((E”,0),(Q1,W1)) = miN"(g — 1) — diN" + D"n; =

=3(g—1)—3j/24+d—j/2=3g—3+d—2j.

Moreover, the invariant ¢ can only assume the value:

¢ = dim Eth((Qg,,O), (Ql,Wl)) = C31 = nlng(g — 1) — d1n3 + d3n1 =
=g—1—j/24+((2d—35)/6=9g—1+(d—25)/3.

Therefore, we get that Uy . = G1 X R, and we get a bundle R, . over Uy, . with fibers
isomorphic to Pb=1 \ Pe—1 = P39—4+d=2  p9—2+(d=21)/3  Now the objects (Q;, W;)’s vary in

the following sets:

(Qla Wl) €Gr= G(l,j/Q, 1)7
(Q2,0) € Gy = M5(2,(2d — §)/3), (Q3,0) € Gy = JZ24=)/6¢.

Since we are assuming that j = 2d mod 6, then (2d — j)/3 is even, so for the scheme Gy
we need to use formula (8.11)). Then we get the Hodge-Deligne polynomial

q;’zs?d — HD(Ra,b,c) _ (HD(P3974+d72j) - fHID(]P)g72+(d72j)/3))HD(Gl)HD(Ra) _

_ (uw)9~1H(d=20)/3 _ (y9)39—3+d=2j oo (14 ux)9(1 + U:):)gx*j/z.
1—wuv 0 (1 —2)(1 —uvx)
HD(P?973) . HD(M?(2, even)) - HD(J24=9)/6¢C) =
_ (uv)9~1H(d=20)/3 _ (y)39—3+d=2] - cooff (14 ux)9(1 + vx)9zI/? 1- (uv)zg—z‘

1—wuv 0 (1 —2)(1 —uvx) 1—wuv
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1
2(1 —uv)(1 — (uv)?)

(14 w)I(1 + ) - (2(1 Fu)?(1+0)(1 + u20) (1 + w?)I+

(14 w21+ 0)29(1 + 205 eI~ 20?) — (1 — u2)9(1 — 02)9(1 — uv)2>.

This concludes the computations for the case when (F, V) has unique «(j)-Jordan-Holder
filtration of length 3.

(2) Not unique «(j)-Jordan-Hdélder filtration. In this case the a(j)-canonical filtra-
tion has necessarily length 2 (it cannot be equal to 1 because in that case this would imply that
the corresponding (E,V)’s are semistable only at the critical value and they are not stable
either on the left or on the right of any such value). If the length of the canonical filtration is
s = 2, by using the same argument used before we get that the canonical filtration of (E,V)
is given by

0C(Q1, W) C(E,V)

with (E,V)/(Q1,W1) ~ (Q2,0) @ (Qs3,0). In this case the 2 cases denoted by (b) and (c)
before coincide since the order of (Q2,0) and (Qs,0) is not important. Therefore, we have
only to consider cases (a) and (b).

(2a) Let us suppose that the (Q;, W;)’s are described as in (a). Then (Q2,0) and (Qs3,0)
are of the same type, so we need to consider 2 subcases.

(2a-i) Let us suppose that (Q2,0) % (Q3,0); since these objects are of the same type,
then we can use proposition in order to have a global parametrization. In this case the
invariant a can assume only the value

a = dim Ext! ((QQ, 0), (Ql, Wl)) =Cy = nlng(g — 1) —ding 4+ dony =

d+j 2d—j
=29-1) - 57+ —3

and analogously also b can only assume the value b = g — 1 + (d — 25)/3. Therefore the only

= 29— 2+ (d—2j)/3

schemes we are interested in are those described in (¢) and (d) in that proposition. From the
point of view of Hodge-Deligne polynomials, we can assume that there is a unique index ¢ = j,
so that there is only one scheme of type (d). Using the last part of proposition we get
that the (E, V)’s we are interested in are parametrized by a scheme M /Zs and from the point
of view of Hodge-Deligne polynomials we can assume that M is the scheme

Gl X (G2 X G3 AN Agg) X P29_3+(d_2j)/3 X ]P’29—3+(d—2j)/3’

where Zsg acts by:

((Qlawl)’QQaQSaMQ,NS) > ((QlaW1)7Q3,Q2»N3aM2>-

Let us write M’ := Go x P29-3+(d=21)/3 — j2d=5)/6C » P29—3+(d=2))/3; then
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o 2g—2+(d—25)/3
HD(M)(u, v) = © (““i — (14 u)9(1 + v)Y.

Therefore we can compute:

A= HD((M/ % M/)/ZQ)(U7 U) _
— %((HD(M’)(U’U))Q FHD(M) (a2, _U2)) _

1— (uv)4gf4+(2d74j)/3
1 — (uv)?

<(1 e T (14 u)*(1+v)% +

0wy -ty iy

N |

and
B .= %D<(A23  P29-3+(d—24)/3 ]P>2g73+(d72j)/3)/22> _

— HD(AQg) . HD((P2g73+(d72j)/3 % ]P)2973+(d*2j)/3)/22) —

1 (1 _ (uv)zg—2+(d—2j)/3)2 1— (uv)4g_4+(2d_4j)/3
i g g
2(1+u) (1+4w) ( (1w + 1= (uv)?

Since j = 2d mod 6, then it makes sense to define k := j/2 € Ny and we get that (Q1, W1)

varies in the scheme

d—25 ~d+j d+j d+j
Gl G ( 3 y Ly 3 ) > G < 3 ) & 3 )

So formula (15.3) gives the Hodge-Deligne polynomial of G;. Finally, we can compute:

@~ .= HD(M/Zy) = HD(G,) - (A — B) =

_ (14+u)9(1+v)Y cooff (14 uz)(1 +vx)?

2(1 — uv) 2 (1—2)(1— uvx)
. (uv)i/2=3/2 B (u)9t(@=20)/3+1515/2 i
1—z(uv)~! 1 — z(uv)?

1 — (up)lo—4+(2d-1))/3

1 — (uv)? (1= =Ty

(1+u)®(1+v)% +

(1 _ (uv)Qg—z—i-(d—Zj)/S)Z
(1 —uv)?

— (qp)29-2+(d=25)/3)2 _ (qp)to—4+(2d—1)/3
(14wl +0v)? <(1 ( (ig_uv)z = + il 1)_g(u,u)2 J )}

(2a-ii) If we are in case (a) and (Q2,0) ~ (Q3,0), then the corresponding (E,V)’s are
parametrized using proposition From the point of view of Hodge-Deligne polynomials,
we can assume that there is a single index ¢. Also in this case, there is only one value for the
invariant a, namely a = 2g — 2+ (d — 27)/3 as in (2a-i). So we can assume that the (E,V)’s
we are interested in are parametrized by a grassmannian Grass(2, R,) where R, is a vector
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bundle over U, = G1 x G2 with fibers isomorphic to C29-3+(d=2))/3 Here G1 and G4 are as
in (2a-i), so we get the polynomial:
Jj=e2d ,_ _
i := HD(Grass(2, R,)) =
—HD (Grass(Q, 29 — 2+ (d — 2j) /3)) “HD(G1) - HD(Gs) =

(1 — (uw)29-3+d=20)/3) (1 — (yp)29-2+(d=2))/3)
(1 —uv)?(1 — (uwv)?)

cocff (1 + ux)9(1 + vz)d [(1L1))j/256_j/2 (uw)9H(d=20)/3+1 g1-3/2

(1+ u)29(1 + v)29)~

— 92|

2 (1—2)(1— uvx) 1—az(uww)~ 1 — z(uv)?

(2b) We have also to consider case (b) (that coincides with case (c)). In that case Q2
and @3 have different ranks, so in particular their types are different, so we can simply apply
propositionin order to parametrize the corresponding (E, V')’s. In this case the invariants
b can only assume the value:

b = dim Ext!((Q3,0), (Q1,W1)) =29 — 2+ (2d — 45)/3

(this is computed as the invariant ¢ is computed in (1b)), and a can only assume the value:

a = dim Eth((QQ,O), (Ql, Wl)) =9 = nlng(g — 1) —ding + dong =
g1 /24 (24— )6 =g—1+(d—2)/3.

From the point of view of Hodge-Deligne polynomials we can assume that there is a single
index i. So we can assume that the (F,V')’s we are interested in are parametrized by a scheme
R that comes with a sequence of two projective fibrations

R—)A—>U:G1XG2XG3;

the first fibration has fibers isomorphic to PP~ = P29-3+(2d-45)/3  while the second fibration
has fibers isomorphic to P¢~! = P9-2+(d=2/)/3 Here the schemes G; for i = 1,2,3 coincide

with those described in case (1b). So we get the polynomial:

qlo**" = HD(P29~3+2A-40)/3)3 p(p9 =2+ (1=2)/3)1 D(G1 YHD(G2)HD(G3) =

- (uv)29-2HRA=4)/3 1 _ (yp))9-1+(d=2)/3

g g.
T g (I+u)(1l+wv)

2(1 +w)9(1 4+ v)?(1 + v?v)(1 + uww?)9+

: 1 (
2(1 — wv)(1 — (uv)?)
—(1+u)?9(1+ )21 + 2099 —u20?) — (1 —u?)9(1 —v?)9(1 — uv)2>-

(1 + ux)9(1 4 vx)dz—i/?
(1—2)(1 —uvx)

- coeff
$0
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15.2.3 Caser =14

In this case the graded is necessarily made of 4 objects of the form (Q1, W1), (Qi,0)i=2,34
where (@1, W) must be necessarily the first object of the graded in order not to desta-
bilize (E,V) for a(j)~. Moreover, every @; for ¢ = 2,3,4 must be a line bundle and
the stability conditions prove that the @Q;’s for ¢ = 2,3,4 must all have the same degree
dy = ds = dy = (2d — j)/6. Therefore, this case is possible only when j = 2d mod 6. More-
over, (1 is a line bundle of degree dy =d —3dy =d — (2d — j)/2 = j/2.

Then we need to consider several different subcases according to the various a(j)-canonical
filtrations. The cases we will consider are those when the canonical filtration is one of the fol-
lowing types: (1,1,1,1) (unique a(j)-Jordan-Hélder filtration), (1,3), (1,2,1) and (1,1,2). A
priori we should also consider the cases (2,1,1), (3,1) and (4); none of these 3 cases is actually
possible since in each case we will have a subobject (Q;,0) C (E,V) for some ¢ € {2,3,4} and
this will prove that (F,V) is not «a_ -stable, so these 3 cases do not occur in the description
of G~ (ae; 4,d,1).

(1) Canonical filtration of type (1,1,1,1) (unique a(j)-Jordan-Hoélder filtration).
Since the (Q;,0)’s for i = 2,3,4 are all of the same type, we need to consider 4 subcases
according to the various relations between them:

(1a) Let us suppose that (Q2,0) % (Q3,0) ~ (Q4,0). Then we can apply proposition
[6.2.6] In this case we need to compute the invariants a,b,c,d, e, f. In order to do that, let
(E2,V2) be any non-split extension of (Q2,0) by (Q1,W1) and let (E”,0) be any non-split
extension of (Q4,0) by (Q3,0). Then Es is a vector bundle of rank Ny = 2 and degree
Dy = (2d —5)/6 + j/2 = (d + j)/3; moreover, the dimension of V5 is Ko = 1. E” is a vector
bundle of rank N” = 2 and degree D" = d3+d4 = 2d3 = (2d—j)/3. Since (Q1, W1) # (Q2,0),

we have:

a = dim Ext'((Q2,0), (Q1, W1)) = Coy =
=nng(g—1) —ding +dom1 =g —1—j/2+ (2d—j)/6 =g — 1+ (d—25)/3.
Since (Q3,0) ~ (Q4,0), we have

b =dim Extl((Q4, 0),(Q3,0)) =Cas+1=mn3ng(g—1) —dsng +dsns +1=g.

Moreover, since (@3,0) is of the same type of (Q2,0) and (Q2,0) % (Q1, W1), we have that
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f = dim Ext'((Q3,0),(Q1,W1)) =a=g— 1+ (d — 25)/3.
Now (E”,0) is a non-split extension of (Qs3, 0) by itself and (Es, V3) is a non-split extension
of (Q2,0) by (Q1,W1). So as in (6.71) we get:
Hom((E”,0), (E2,V2)) = 0 = Hom((Qy4, 0), (E2, V3)).

Moreover, we have also that Hom((E”, V"), (Q1,W1)) = 0 because the graded of (E”, V")
does not contain any object isomorphic to (Q1, W1). Then we can compute also the following

invariants.

¢ = dim Ext'((E", V"), (F3,0)) = NaN"(g — 1) — DoN" + D" Ny =
=4(g—1)—2(d+j)/3+2(2d — j)/3 = 4g — 4 + (2d — 45)/3.

d = dim Ext'((Q4,0), (B2, V2)) = Nana(g — 1) — Dong + dsy Ny =
=2g—1)—(d+4)/34+(2d—j)/3 =29 — 2+ (d—2j)/3.

e = dim Ext'((E”,0),(Q1,W1)) =niN"(g —1) —d;N" + D"n; =
=2(g—1)—j+(2d—j)/3 =29 — 2+ (2d — 45)/3.

So each invariant can only assume one value. From the point of view of Hodge-Deligne
polynomials, we can ignore the indices 4, j, ! of proposition so without loss of generality
we can assume the following description:

e U, = G1 x Gy and there is a projective bundle R, over it with fibers isomorphic to
Po—1 = pg—2+(d—2)/3.

o UY = G3 = G4 and there is a projective bundle R’ over it with fibers isomorphic to
]P)b—l — Pg—1;

e from the point of view of Hodge-Deligne polynomials we can suppose that R, x R® =
Gy x G X G3 x P9=2+(d=27)/3 « p9—1 G4 we can assume that

Unbedes=G1x (Ga x Gz N\ Agz) x PI~2Hd=21)/3 5 po—1,

there is a bundle R p ¢ d.e f over it with fibers isomorphic to C4~1 x (Pe-d-1\Pe=/~1) =
C29-3+(d=2))/3 ¢ (P29—3+(d=2))/3 \ pg—2+(d=2))/3)

The (E,V)’s we are interested in are parametrized by the scheme Ry, ¢ ¢. In this case

G1=G(1,j/2,1), Gy=G3=Gy=J05C,

So we get the polynomial
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a1 = HD(Rapcde.s) = HD(G1)(HD(G2)® — HD(Ga) HD (P4~ HD (P~ 2HI=20005).
.HD((C29—3+(d—2j)/3 X ([p2g—3+(d—2j)/3 ~ ]pg—2+(d—2j)/3)> =

(14 ux)I(1 + va)Ia—I/? 1= (w)?
(1—2)(1 —uvz) 1—uv

(uv)g—1+(d—2j)/3 _ (uv)29—2+(d—2j)/3

= (1 w)*(1+0)*(1 +w)?(1 +v)° — 1) cocft

1- (uv)9—1+(d=29)/3 (u)Po-S+Ha29)/3

1—uv 1—uv

(1b) Let us suppose that (Q2,0) % (Q3,0) % (Q4,0); we don’t fix any additional condition
on the relations between (Q2,0) and (Q4,0). Then we can apply proposition Also in
this case we need to compute invariants a,b,c,d, e, f. In order to do that, let (Fs, V2) and
(E",0) be as in the case (1a). Then we get the same invariants computed before, except for
the invariant b that now has value g — 1 (instead of ¢). In particular, each invariant can only
assume one value. From the point of view of Hodge-Deligne polynomials, we can ignore the
indices 4, j,l of that proposition, so we can assume that:

e U, = G1 X Gy and there is a projective bundle R, over it with fibers isomorphic to
pe—1 — [P)g—2+(d—2j)/3;

o U’ = G35 x G4 ~ A3y and there is a bundle R? over it with fibers isomorphic to P'~! =
]P’g_g;

e from the point of view of Hodge-Deligne polynomials we can suppose that R, x R® =
G1 X Gy X (G3 x Gy~ Asy) X P9—2+(d=25)/3 % P9=2 S we can assume that

Ua,b,c,d,e,f =G X (GQ X (G3 X G4 A34) ~ Aoz X G4) X Pg72+(d72j)/3 X ]P)gfz;

there is a bundle R, ¢4 r over it with fibers isomorphic to

pe—1  pdte—f—1 _ pig—5+(2d—4j)/3 _ p3g—4+(2d—4j)/3

The (E,V)’s we are interested in are parametrized by the scheme R, cq.e f. Also in this
case

Gi1=G(1,j/2,1), Gz=G3=Gy=J@0/5C,
Now as in (15.4) we get that
HD(Ga x (G3 x Gy~ Azy) N Agz x Gy) = HD(Go)(HD(G2) — 1)

So we get the polynomial

5% = HD(Rup cdes) = HD(G1)HD(Go)(HD(Gy) — 1)
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_HID(]P)ng)fHD(ng2+(dej)/?;)HD(P4g75+(2d74j)/3 N ]P>3gf4+(2d74j)/3) —

_ (1 -+ ua)9(1 + va)a—/?
=(1+u)f1+0)9((1+u)f1+v)—1)> cc;%ff (1—z)(1—wz)

1— (u0)91 1 — ()9~ 1H@=2D)/3  (y)39-3+QRd=41)/3 _ () 49—4+(2d—4))/3

1—wv 1—wv 1—wuv
(1c)-(1d) As we stated in remark we are still not able give a geometric description

=62d i=¢2d
6 6 r

of these 2 cases. We simply denote the corresponding polynomials by q{3 and ¢f; e-

spectively.

(2) Canonical filtration of type (1,3). Since the (Q;,0)’s for i = 2,3,4 are all of the
same type, we need to consider 3 subcases as follows:

(a) there are no pairs of isomorphic objects among the (Q;,0)’s for i = 2,3,4;

(b) exactly 2 objects among the (Q;,0)’s are isomorphic; without loss of generality we can
assume that they are (Q2,0) and (Q3,0);

(¢) (Q2,0) ~ (@3,0) = (Q4,0).

(2a) Let us suppose that there are no pairs of isomorphic objects among the (Q;,0)’s
for ¢ = 2,3,4. Then we can apply proposition In this case we need to compute the
invariants a, b, ¢; the same computation that gives the invariants a and f in case (1a) proves
that we have:

b = dim Ext'((Qs,0), (Q1,W1)) =g — 1 + (d — 2j)/3.

Analogously, since (Q2,0), (Q3,0) and (Q4,0) are all of the same type, we get that

a = dim Ext'((Q2,0), (Q1,W1)) =g — 1+ (d—25)/3 =
= dim Eth((Q4, O), (Ql, W1>) =cC.
Now G1 = G(a(j);1;5/2,1) and Gy = J@4=9/6C 50 both spaces are irreducible. There-
fore the index ¢ appearing in proposition assumes only one value. Moreover, since
G2 = G3 = Gy, also the indices j and k can assume only one value. Therefore, we get that

Uz, =Up; =Us = G1 x Ga.

C

Then we get that the only scheme R, .; j 1 that we will be interested in is Ry 445144, that
comes with a locally trivial fibration to

Un,asasiii = Ugy X Usi X6y Ugyy = G1 X G2 x G x Ga.
with fibers isomorphic to P9=2(d=21)/3 x pg—2+(2i—d)/3 » pg—2+(d=27)/3  Gince this is the only

case, then the only object we need to consider is given by case (j) of that proposition, namely
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R = (Ra,a,0:i,1,i] 1 x (G2 xGax Ga)) /53

where A is the big diagonal of Go X G2 x G, i.e. the set of all triples of objects such that at
least 2 of them are isomorphic. Every o € S5 acts by permutations on the ordered set {2, 3,4}
and it acts as follows on Uy, g4, and R q,a:i,4,4:

18yl

o (Qi,Wi)iz1234 — ((Q1,W1), (Qo(i), Woi))i=2,3.4);

o (i)i=234 (u(,(,—))i:g,u for every point (g, us,4) in the fiber over a quadruple
(Qi, Wi)i=1,. 4 € Ugaasiisi-

Moreover, there exists a finite disjoint covering of the base space G x (G2 X G2 X G2\ A)
by locally closed subschemes T; that are invariant under the action of S3 on G1 X Go X G X Go;
in addition, there exist trivializations of the fibrations from Rg 4.4:ii. t0 Ua,a,iiii

Rlz, 5 Tj x PI-2H-20)/3 5 po=2+(d=2)/3 . po=2+(4-2))/3

that are compatible with the natural action of Ss on T} x P9—2+(d=25)/3 y pg—2+(d=25)/3
P9—2+(d=2/)/3 From the point of view of Hodge-Deligne polynomials, we can therefore assume
that R coincides with a scheme of the form M/Ss, where M is the scheme

Gy % (G x Gy x Gy~ A) x P9—2+Q2i—d)/3 o p9—2+(25—d)/3  pg—2+(2j—d)/3

and every o € S3 (considered as the set of permutations of {2,3,4}) acts on M as follows:

((Qla W1)7 Q27 QS) Q47 M2, 13, H4) —
= ((Q17 W1)7 QJ(2)7 ch(3)7 QO’(4)7 He(2) Ho(3) /1’0(4)) .

Let us consider the following schemes:
M’ = Gy x PI72H(d=20)/3 — jRd=1)/6 x5 p9—2+(d=27)/3

{(Q2,Q3,Q4) € G2 x Ga x G2 s.t. Q2 ~ Q3 =~ Q4},
Ar = {(Q2,Q3,Q4) € G2 x G2 x G s.t. Q2 ~ Q3 % Qu},
{(Q2,Q3,Q4) € G2 x G2 x G2 s.t. Q2 ~ Qu # Q3},
{( )

Q2,Q3,Q4) € G2 x Go X Gy s.t. Q3 ~ Q4 # Q2}. (15.8)
Then Ag ~ Gy and A; ~ Go x G A for i = 1,2, 3, where A’ is the diagonal of G5 x Gs.

Moreover, we can write

A=A ITA; T Ay TT As.

Now we have that



364 15. Case n=4, k=1

M/Ss ~ Gy % ((M' x M' x M)/ S5~
((Ao « P9—2+(d—27)/3 o Pg—2+(d—25)/3 « P9—2+(d—2j)/3)/53 I (15.9)
TI((Aq IT A IT Ag) x PI=2H(@=20)/3 5 po—2+(0-2))/3 ]P;g—2+(d—2j)/3)/53)) )

Now

HD(M')(u, v) = (1 + u)9(1 + v)9 -~ (uv)9 "+ 25

1—wuv

So we can use lemma, [8.0.6]in order to compute
1
A:=HD((M' x M' x M")/S3)(u,v) = 6(%D(M’)(u,v))?*+

S HD(M') (—, ~?) - HD(M")(u,0) + SHD(M') (i, %) =
(1 _ (uv)gfl+(df2j)/3)3
6(1 —uv)3
(1 — (uw)29-2+2A=4)/3) (1 _ (yp)9=1+(d=27)/3)
2(1 — (uv)?)(1 — uv)

Now the action of S3 on Ag is trivial; moreover, we have

= (14+u)®(1 4 v)> + (1 —u?)9(1 — 0?91 +u)? (1 +v)9-

39—3+d—2j
g1 — (uv)* J

+(1+u?) (1407 31— (uv)?)

(Al HAQ HAg)/Sg ~ Al/Zg ~ (G2 X G2 AN A/)/ZQ ~ (Gg X GQ)/ZQ N GQ.

So we have:

(Ag x PI~2HA=2)/3 o po=2+(d=2)/3 o po=2+(d=2)/3) /G, ~
Gy x (PI~2HA=2)/3 o po-2+(d=2))/3 o po-2+(d-2))/3) /g,
and
((Al IT Ao IT As) x PI—2+(d=25)/3 o pg—2+(d—2§)/3 ]P;g—2+(d—2j)/3>/53 ~
NGy x (PI=2H(EA=20)/3 o p9*2+(d*2j)/3)/22> « P9—2+(d=25)/3
So we compute:

By i= HD(Gy x (PI~3H(@=20)/3 o pa=2+(d=2))/3  po-2+(d=2)/3) /G.)) =

()9 1+d=20)/3)3
=1 +u)f(l+v)?- <(1 (6()1uv)3 ) +

(1-— (uv)2g—2+(2d—4j)/3)(1 _ (uv)g—1+(d—2j)/3) 1— (U,U)3g—3+d—2j .
51— (w0)?)(1 — v) TR (w)) ) ’
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By := HD((Gy x Gy x PI~2+(d=20)/3 » p9=2+(d=21)/3 y77,) 5 p9—2+(d=2)/3) —

% (1 - (uv)gfl+(d72j)/3)2
(1 —uv)?

+ (1 —u?)9(1 — 0?9

. ((1 +u)?9(1 +v)

| =

1 — (uv)?

1— (uv)2g72+(2d74j)/3 1— (uv)gflJr(dej)/S'
1—wv

B3 = HD(Gy x ((PI~2H(d=20)/3 y pa—2+(d=21)/3) y7,)  po—2+(d=2))/3) —

1 (1 o (uv)g—1+(d—2j)/3)2 1— (uv)29—2+(2d—4j)/3
[ g g .
2(1 )1 +v) < (1 — uv)? + 1 — (uv)?

1—wv
Then by considering everything together, we have:
=% .= (A— By — Bo+ B3) - HD(G1) =

1— (uv)g_1+(d_2j)/3)3
6(1 —uv)?

- {((1 +u)9(1 + )t (1= uw?)?(1 = o2)(1+ (1 + o)

'(1 _ (uv)29—2+(2d—4j)/3)(1 _ (uv)g_1+(d_2j)/3) u3 U3
21— (w0)?)(1 — w) A+ u) L+

o1 — (up)3—3+d-2
3(1 — (uwv)3)

+

(1 o (uv)g—1+(d—2j)/3)3
6(1 —uv)3

(L u)?(1+ ) < -

(1 — (uw)29-24Qd=49)/3) (1 — (yp)9~1H(d=20)/3) 1 _ (yp)39—3+d=2
2(1 — (uwv)?)(1 — w) * 3(1 — (wv)?) ) +

(1 _ (uv)gfl+(d72j)/3)2

e A=y

—% . ((1 W) (1 4 0)%

—+

1 — (uv)?

1— (uv)29_2+(2d_4j)/3 1— (uv)g—l—i-(d—Qj)/S
1—wv

_ g—1+(d—25)/3)2 _ 2g—2+(2d—45)/3
+;(1+u)9(1+v)9<(1 (uv) Ll L) )

(1 —uv)? 1 — (uv)?
1- (uv)9~1H+(d=25)/3 . (1 +uz)9(1 + vx)Iz—i/?
1—wuv 00 (1—2)(1 —uvx)

(2b) Let us suppose that (Q2,0) ~ (Q3,0) % (Q4,0). Then we can apply proposition
.3.9} In this case we need to compute the mvariants a and 0. e same analysis of case (2a
7.3.5, In thi d he i i d b. Th lysis of 2
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proves that a = b= g— 1+ (d —2j)/3 and that the indices ¢ and j can only assume one value.
Therefore, we get that

Uz;=Upy; = G1 x Gy.

and

Vapsij = (Uc%;i X, Uéj) N (G x (G x Ga N A)) =G1 x (Ga x Ga N A).

The scheme we are looking at is R, j, that comes with a morphism

$2091 v

Rabi,j a,biig >

where ¢; is a fibration with fibers isomorphic to Pb=1 = P9=2+(d=2)/3 and ¢, is the grass-
mannian fibration of 2-planes associated to a vector bundle Qg ; over Vg4, ; with rank
a=g—1+(2j—d)/3. So we get:
qls**" = HD(Rapi ;) =
= HD(Gy x Ga ~ AYHD(G1)HD(PI~>Hd=2)/31D(Grass(2,9 — 1 + (d — 25)/3)) =

= ((1 + u)29(1 + U)Qs] —(1+v)9(1+ ,U)g) ] CO(gff (1 +ux)d(1+ Ua;)ga;*j/%

x (1 —2)(1 —uvx)
1— (uv)g_l+(d_2j)/3 (1 _ (uv)g—2+(d—2j)/3)(1 _ (uv)g—l+(d—2j)/3)
o low | (1= u0)(1 = (w)?)

(2c) Let us suppose that (Q2,0) ~ (Q3,0) ~ (Q4,0). Then we can apply proposition
[7.3.6] In this case the only invariant that we need is a. As before, a = g —1+ (d —25)/3 and
the index ¢ can only assume one value. Therefore, we get that U,; = G1 x G2. The scheme we
are looking at is the grassmannian of 3-planes associated to a locally free sheaf R, of rank
a=g—1+(d—2j)/3 over Ug,;. So we get:

@~ .= HUD(G1)HD(G4)HD(Grass(3,g — 1 + (d — 2j)/3)) =
(1 +ux)9(1 + vx)gx_j/Q.
(1 —-2)(1 —uvx)
(1— (uv)g—3+(d—2j)/3)(1 _ (uv)g_2+(d_2j)/3)(l _ (uv)g_1+(d_2j)/3)
' (1 = uo)(1 = (u0)?)(1 — (w)?) '
(3) Canonical filtration of type (1,1,2).

Since the (Q;,0)’s for i = 2, 3,4 are all of the same type and since the order of (Q3,0) and
(Q4,0) is not important, we need to consider 4 cases as follows:

=1+u)f(1l+v)- coeff

(a) <Q270) = (Q?”O) # (Q470);
(b) (Qi,0) # (Q;,0) for all i # j € {2,3,4};
() (@2,0) # (@3,0) = (Q4,0);
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(d) (@2,0) ~(@3,0) ~ (Q4,0).

(3a) Let us suppose that (Q2,0) ~ (Q3,0) % (Q4,0). Then we can apply proposition
7.7.1] In this case we need to compute the invariants a, b, ¢, d. In order to do that, let (E2, V3)
be any non-split extension of (Q2,0) by (Q1,W7); then Es is a vector bundle of rank Ny = 2
and degree Dy = dy +dy = j/2+ (2d — 7)/6 = (d + j)/3; moreover, the dimension of V5 is
Ky = 1. Since (Q2,0) # (Q1,W1), we have:

a = dim Eth((QQ,O), (Ql, Wl)) =(Cy = nlng(g — 1) —ding + dony =
C g1 /2t (24— )f6=g—1+(d—2))/3

By the same computation we get that

¢ = dim Ext'((Q4,0), (Q1,W1)) = g — 1 + (d — 2j)/3.
Since (Es, V2) is a non-split extension of (Q2,0) by (Q1, W) and since (Q;,0) 2 (Q1, Wh)
for i = 2,3, 4, then
HOID((QZ', 0)7 (E2a ‘/2)) =0 for i = 27 374

Therefore, we have that

b= dim Eth((Q4, 0), (EQ, Vg)) = N2n4(g — 1) — Dong + dyNo =
=2(g—1)—(d+37)/3+2d—j)/3=29—2+ (d—2j)/3.

By the same computation we get that

d = dim Bxt'((Q2,0), (Ea, V3)) = 29 — 2+ (d — 25)/3.

So each invariant can only assume one value. From the point of view of Hodge-Deligne
polynomials, we can ignore the indices i and j of proposition [7.7.1] so we can assume that we
have the following description.

e U, = G1 X Gy and there is a projective bundle R, over it with fibers isomorphic to
Po—l = P9—2+(d=2/)/3; from the point of view of Hodge-Deligne polynomials we can
assume that R, = G1 x G x PI—2+(d=2j)/3.

e from the point of view of Hodge-Deligne polynomials we can assume that Ugpcq =
G1 X (Ga x G4~ Agy) X P9_2+(d_2j)/3; there is a scheme R, . 4 together with a fibration
to Ugp,c,a With fibers isomorphic to

(Pd_l N Pa—2) % (Pb_l N Pc—l) —

— (P29-3+(d=2))/3  po—3+(d-2))/3) . (p20-3+(d-21)/3 _ po-2+(d-2))/3)
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In this case

Gl = G(L]/Za 1)7 G2 = G4 = J(Qd_j)/60.

So we get the polynomial

757" = HD(Rapca) = HD(G1)(HD(Go)? — HD(Go)yHD(PI~2Hd=2)/3).
'(HD(P29_3+(d_2j)/3 < Pg_3+(d_2j)/3_1) i HD(P29_3+(d_2j)/3 < Pg—2+(d—2j)/3—1) _

— copf (LF WDl a2 ) oy (1 w1 40— 1)

x (1 —-2)(1 —uvx)

1— (uv)g—1+(d—2j)/3 (uv)g_2+(d_2j)/3 o (uv)29_2+(d_2j)/3 (uv)g_1+(d_2j)/3 o (uv)29—2+(d—2j)/3

1—wuv 1—wuv 1—wv
(3b) Let us suppose that (Q;,0) % (Q;,0) for all @ # j € {2,3,4}. Then we can apply
proposition In this case we need to compute the invariants a,b,c,d,e. Also in this
case, we denote by (F2,V2) any non-split extension of (Q2,0) by (Q1,W1); again we have
(N2, Do, Ko) = (2,(d+ 7)/3,1). Since (Q1, W1) % (Qi,0) for i = 2, 3,4, we have as before
a = dim Ext'((Q2,0), (Q1,W1)) =g — 1+ (d — 27)/3,
¢ = dim Ext'((Q4,0), (Q1, W1)) = g — 1+ (d — 25)/3,
e = dim Ext'((Q3,0), (Q1,W1)) =g — 1+ (d —25)/3

and

b = dim Ext'((Q4,0), (B2, V2)) = 29 — 2 + (d — 25)/3,
d = dim Ext'((Q3,0), (B2, V2)) = 29 — 2 + (d — 25)/3.

So each invariant can only assume one value. From the point of view of Hodge-Deligne
polynomials, we can ignore the indices ¢ and j of that proposition, so we can assume that we
have the following description.

e U, = (G1 X G2 and there is a projective bundle ¢, : R, — U, with fibers isomorphic
to Pe—l = Pg_2+(d_2j)/3; from the point of view of Hodge-Deligne polynomials we can
assume that R, = G1 x Go x PI—2+(d=2j)/3

e The scheme U, ¢ 4. coincides with

{((E2, V2), (@3, W3),(Q4,W4)) € R, x G3 x Gy s.t.
(Qu, W) % @, (Ea, Va) for | = 3,4, (Q3, W3) % (Q4, Wa)}

where P, is the composition of ¢, with the projection to G2. From the point of view of
Hodge-Deligne polynomials we can assume that Uy pcqe. = G1 X (G2 X G3 x G4\ A) X
]P’9_2+(d_2j)/3, where A is the “big” diagonal of G2 x G3 X G4 = G X G X G2. Since
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(b,c) = (d,e), then the we need only to consider case (b) in proposition so the
(E,V)’s we are considering are parametrized by a scheme of the form Rgp cp.c/Z2; by
proposition from the point of view of Hodge-Deligne polynomials we can assume

that Ry p.epe/Z2 coincides with the scheme (M/Zy) x P9=2Hd=2)/3 x G, where
M := (Gy x G3 X Gy~ A) x (P2973+(d=27)/3 { pg—2+(d=2))/3)2

and where Zy acts on M by permutations on G x G3 and on (P29-3+(d=21)/3 pg—2+(d=25)/3)2,

Also in this case

Go =Gy =Gy =J%95C G, =G@1,j/2,1).
Moreover, we have that A ~ Ay II Ay IT Ao IT A3, where the A;’s are as in (15.8). Let us

define the scheme
M/ = GQ % (]P)2973+(d72j)/3 N Pg*2+(d*2j)/3).

By construction the action of Zo is trivial on AgII A1 ~ G x G1 and it exchanges As and

As. Then

M/Zy = (M/ x M’ x Gz) /7o ~ ((Ao LAy x (P29-3+(d=2)/3  po—2+(d=2))/3y2y /7, 11
IT (Ao IT Az x ([p2973+(d72j)/3 N [[Dg*2+(df2j)/3)2)/22) _
= (M x M) /2 x Go . (B0 11 Ay x (B0-50-2)/3  po=2+d-2)/32 7, 1
1Ay x (P2973+(d=2)/3 ]pg*2+(df2j)/3)2)'

Now

HD(M') = HD(Ga) x HD(P2~3+Hd=2)/3 { po=2+(d=27)/3) —
g=1H(d=27)/3 _ (1)) 29~ 2+(d2)/3

= (11 u)9(1 1 o)) —

Therefore, by [MOVG2), lemma 2.6] we get the following polynomial:

HD((M' x M"))Zs) =

_ 1 29 2 ((w)9=1Hd=20)/3 _ (yp)29-2+(d=2j)/3)2
2 <(1+U) (+e) (1 —uv)? +
29—2+(2d-45)/3 _ 4g—4+(2d—45)/3
_ovgr _ o2ye (U0) (uv)
+(1 —u?)9(1 —v?) o

Moreover, we can compute
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HD((P29—3+(d=2)/3  po=2+(d-2)/3)2 j7.y

1 <((U’U>g_1+(d_2j)/3 _ (uv)29—2+(d—2j)/3)2 (uv)29_2+(2d_4j)/3 _ (uv)4g—4+(2d—4j)/3>

(1 —uv)? 1— (uv)?

So we get, that:

_1 2 2g ()91 EA=2D/3 _ (3y) 29~ 24(d=27)/3)2
HD(M/Z5) = ((1 (14 v) at) .
29—2+(2d—45)/3 _ 4g—4+(2d—45)/3
+ (1 — u2)9(1 - 1)2)9 (’UfU) - (UE),L)L;)) > (1 + U)g(l + U)g+
! 29 g ([ (u0)9~THE=2D)/3 _ (y)29-2+(d=2i) /32
2(1+u) (1+wv) w02 n

()20~ 2+ 2A=49)/3 _ ()dg—4+(2d~17) /3
1 — (uv)? +

((uv)g—1+(d—2j)/3 . (uv)2g—2+(d—2j))2

—(L+u)(1+0)(L+u)(1+0)7 —1) (1 — uv)?

So we get the polynomial:

@552 = HD (R pe e/ o) = HD(M/)Zo)HD(G1)YHD(PI~2H(d=2)/3) —

_ 1 2 gy ()9~ VHE2D)/3 ()20~ 2+(d-23)/3)2
_{2<(1+u) (1+v) EE "

(uv)29-2HRA=4)/3 _ () 49—4+(2d-4))/3

1 — (uv)?

+ (1 —u?)(1 — v2) >(1+u)9(1+v)9+

1 2 g [ (w0)9~THE=2D/3 _ (y)2%9-2+(d=2i) /32
2(1—|—u) (1—i—v) (1—uv)2 "

(uv)29_2+(2d_4j)/3 _ (UU)49—4+(2d—4j)/3
- +

1 — (uv)?

—(1+ w1 +0) (1T +u)!(1+0v) —1)

((uv)g_l+(d_2j)/3 - (uv)zg—2+(d—2j)/3)2
(1 —uw)? '

g 9p—3/2 1 — g—1+(d—25)/3
- cooff (I +uz)d(1 +vx)iz 1= (uw) .
0 (1—2)(1 —uvx) 1—wuv

(3c) Let us suppose that (Q2,0) %2 (Q3,0) ~ (Q4,0). Then we can apply proposition
[7.7.3] In this case we need to compute the invariants a, b, c. Also in this case we get



15.2 The moduli spaces G~ (a(j);4,d, 1) 371

a = dim Ext'((Q2,0), (Q1,W1)) = g — 1+ (d — 23)/3,
b= dim Ext'((Q3,0), (E2,V2)) = 29 — 2+ (d — 2j)/3,
¢ = dim Ext!((Q3,0), (Q1,W1)) = g — 1+ (d - 25)/3,
so each invariant can only assume one value. From the point of view of Hodge-Deligne poly-

nomials, we can assume that we have the following description.

e U, = (G1 X G2 and there is a projective bundle ¢, : R, — U, with fibers isomorphic to
pe-1 — Pg—2+(d—2j)/3;

o Ugyp is the set

{((E27‘/é)v (Q3a0)) € Ra X G3 s.t. (Qg,O) ¢ @a(E% VQ)}v

where ©, is the composition of ¢, with the projection to Ga2. From the point of view
of Hodge-Deligne polynomials we can assume that U,p. = G1 X (G2 x G3 \ A) x
P9—2+(d=25)/3 wwhere A is the diagonal of Go x G3 = Go x Gy. The (E,V)’s we are
interested in are parametrized by a scheme R, .. Such a scheme comes with a fibration
Ropec — Ugpe with fibers isomorphic to C?%¢ x Grass(2,b — ¢) = C29-2+2d=47)/3
Grass(2,9 —1).

Then we get the polynomial

@52 = HD(Ryp.) = (HD(Go)? — HD(Gy)) x HD(G1) x HD(PI~2Hd=2)/3).

HD(C29~ A=)y D(Grass(2,9 — 1)) =
(1 + uz)9(1 + vx)dz—i/? '
(1 —-2)(1 —uvx)
L) B g, (L 00 = ()
1—wv (1 —uv)(1 — (uv)?)

(3d) Let us suppose that (Q2,0) ~ (Q3,0) ~ (Q4,0). Then we can apply proposition
7.7.4. In this case the invariants a,b and the scheme R, are as in (3c). Moreover, the

= (1 u)*(1+0)((1+w)?(1 +v)° — 1) coeft

scheme U, coincides with R, and the (E,V)’s we are interested in are parametrized by a
scheme R,;. Such a scheme comes with a fibration R, — U, with fibers isomorphic to
C2%2 x Grass(2,b —a+ 1) = CH~4+R4-4)/3 « Grass(2,g). Then we get the polynomial
@ = HD(R,p) = HD(G2)HD(G,) x HD(PI~>+(4-21)/3).
HD(C2~ A0/ YD(Grass(2, g)) =

(14 uz)?(1 +vx)dz9/2 1 — (u)9—1Hd-20)/3
=(1 I(1 9 coeff ) '
( +U) ( +U) C?ﬁ (1 —l’)(l —UUQT) 1 —w
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()29~ 4+ (2d=4)/3 (1= (w)9~H(1 = (w)?)
(1 —uv)(1 — (uv)?)

(4) Canonical filtration of type (1,2,1).
In this situation we need to consider the following subcases:

(a) (Q2,0) # (Q3,0) ~ (Q4,0);
(b) (Qi,0) # (Qy,0) for all j # j € {2,3,4};
(¢) (Q2,0) = (Q3,0) # (Q4,0);
(d) (Q2,0) = (@3,0) ~ (Q4,0).
As we said in remark we are able to describe completely cases (a),(¢) and (d) but

not case (b).

(4a) If we suppose that (Q2,0) % (Q3,0) ~ (Q4,0), then we can apply proposition [7.6.2]
In this case we need to compute the invariants a, b, c. In order to do that, first of all let us fix

any pair of non-split extensions of the form

0— (Q1,W1) — (Ei1, Vi1) — (Q4,0) = 0

for ¢ = 2,3 and let us denote by

0= (Q1,W1) — (B2, Vo) — (Q2,0) ® (Q3,0) = 0

their sum. Then (FEs, V) is a coherent system of rank No = 3, degree Dy = dy + da + d3 =
(4d + 5)/6 and with Ky = 1. Since (Q2,0) and (Q3,0) are not isomorphic to (Q1, W1), then
as in case (3) we have that:

a = dim Ext!((Q2,0), (Q1,W1)) =g — 1+ (d — 2j)/3,
b= dim Ext*((Q3,0), (Q1,W1)) =g — 1+ (d — 25)/3.
Moreover,

¢ = dim Ext'((Q3,0), (E2,V2)) = Nang(g — 1) — Dong + dsNo =

Ad+j  2d—j
=39-1) - —5—+—5

So each invariant can assume only one value. By proposition we can therefore suppose

=39 -3+ (d—25)/3.

that we have the following description.

° Ug = Gl X GQ, Ug = Gl X Gg, Ua,b = G1 X G2 X Gg and Va,b = G1 X (G2 X Gg\A); there
is a fibration R, — Vg with fibers isomorphic to Pe—1 x pb-1 = (Pg_2+(d_2j)/3)2;

e Uype = Rgp and there is a fibration R,y . — U,p with fibers isomorphic to Pl
Pb—2 — p3g—4+(d—25)/3 _ pg—3+(d—2j)/3.
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So we get;:

0h5 "> = HD(Ry ) = HD(G1)(HD(Gs)? — HD(G2))-
.(HD(PQ—2+(d—2j)/3))2(HD(P39—4+(d—2j)/3) _ prg—3+(d—2j)/3)) —

(1 . (uv)g—1+(d—2j)/3)2 '

=1+u)f1+v)((1+u)(1+v)?—1)

(1 —uw)?
(uv)972+(d72j)/3 — (uv)3g*3+(d72j)/3 (1 + ux)g(l _|_ vx)g$7j/2
. 1 —ww e (1 —2)(1 —uvx)

(4b) As we said before, currently we are not able to compute the polynomial for this case.

. .. . j=62d
For simplicity we name it as ¢35 °".

(4c) If we suppose that (Q2,0) ~ (Q3,0) % (Q4,0), then we can apply proposition [7.6.3]
In this case we need to compute the invariants a,b,c. Let (E2,Va2) be as in (4a); then it is

a coherent system of rank Ny = 3, degree Dy = (4d + j)/6 and with Ky = 1. By the same
computations of case (4a) we have that:

a = dim Ext'((Q2,0),(Q1,W1)) =g — 1+ (d — 2j)/3,

b = dim Ext'((Q4,0), (E2,V3)) = 3g — 3 + (d — 25)/3,

¢ = dim Ext'((Q4,0), (Q1,W1)) = g — 1 + (d — 2j)/3.

So each invariant can assume only one value. By proposition we can therefore suppose
that we have the following description.

e U, = G1 X Gy and there is a fibration R, — U, with fibers isomorphic to Grass(2,a) =
Grass(2,g — 1+ (d — 27)/3). From the point of view of Hodge-Deligne polynomials we
can assume that R, = G1 x G2 X Grass(2,9 — 1+ (d —25)/3).

e From the point of view of Hodge-Deligne polynomials we can assume that

Uspe=G1 x (Ga x G4 N A) x Grass(2,g — 1+ (d —25)/3)

and that there is a fibration R,;. — U,p,. with fibers isomorphic to Pb—1 Pl =
]P>39—4+(d—2j)/3 N Pg—2+(d—2j)/3.

So we get;:

@55 .= HD(Rap.) = HD(G1)(HD(Ga)? — HD(Gy))-
HD(Grass(2,9 — 1+ (d — 25)/3))(HD(P39~4+(d=20)/3) _ qyp(p9—2+(d=2)/3)) =

(1— (uv)g—2+(d—2j)/3)(1 _ (uv)g_l+(d_2j)/3)

= (1+w!(1+0)(L+ (1 + ) — 1) (1 wo)(1— (w0)?)
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(uv)gfl‘i’(d*zj)/g — (UU)3973+(d72j)/3 (1 + u;(;)g(l _|_ Ux)gxfj/2
. 1 —ww e (1—2)(1 —uvx)

(4d) If we suppose that (Q2,0) ~ (Q3,0) ~ (Q4,0), then we can apply proposition [7.6.4]
In this case we need to compute the invariants a,b. Let (E2,V3) be as in (4a); then as before

we have that:

a = dim Ext'((Q2,0), (Q1,W1)) = g — 1 + (d — 25)/3,
b = dim Ext'((Q2,0), (B2, V2)) = 3g — 3 + (d — 25)/3.
So each invariant can assume only one value. By proposition we can therefore suppose
that we have the following description.
e U, = G1 X G2 and there is a fibration R, — U, with fibers isomorphic to Grass(2,a) =
Grass(2,9 — 1+ (d — 25)/3).
e U, = R, and there is a fibration R, — U,y with fibers isomorphic to Pb—1 ((Po—3 =
P39—4+(d—2j)/3 . pg—4+(d—23)/3

So we get:

Pz .= HD(R, ) = HD(G1)HD(G2)HD(Grass(2,g — 1+ (d — 25)/3))-
(HD(P39-4+(d=2))/3) _ gy p(po—4+(d-20)/3)) =
(1— (uv)g72+(df2j)/3)(1 _ (uv)g—1+(d—2j)/3)
(1 —uv)(1 = (w0)?) '

(uv)g_3+(d_2j)/3 — (UU)39_3+(d_2‘j)/3 (]_ + um)g(]_ _|_ 'Uf]:)gﬂf_j/z
. 1 —wuv e (1—2z)(1 —uvx)

— L+ (1 +v)’

15.3 Crossing a critical value «(j)

According to the description given at the beginning of the chapter, the non-zero effective
critical values are contained in the set of those «(j)’s such that [j]g € {0,2,4,2d + 3} 04 6-
The computations given in the previous 2 sections actually prove that each such j gives rise
to an actual critical value. To be more precise:

(1) if 7 =2d + 3 mod 6, then

HD(G(a(j); 4,d,1)) = HD(GT (alj);4,d, 1)) = g = p =02
(2) if j =2d+ 2 mod 6 or j = 2d + 4 mod 6, then

HD(G™ (a(5);4,d,1)) = HD(G " (a(j); 4, d,1)) =

| j=2d42 j=¢2d+2 _ j=e2d4+4  j=¢2d+4.
=q - =aq - ;
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(3) if j = 2d mod 6, then

HD(G™ (a(5);4,d,1)) — HD(GT (a(j); 4, d, 1)) =

j=62d j=62d j=62d =62d

Actually, we can compute explicitly those quantities only in the first 2 cases, as shown
below. In the third case we are not able to get an explicit result for 2 different problems:

e first of all, there are no formulae in the literature for the Hodge-Deligne polynomials of

M?#(3,e) when e = 0 mod 3; therefore it is not possible to write explicitly the polyno-

. j=62d jE@Qd_
mials p] and ¢]

e secondly, as we said before, at the moment we are not able to compute the 8 polynomials
i=62d j=62d _j=62d j=e2d _j=e62d _j=62d _j=e2d j=62d
Pzt P Pas Pr a5 izt sdix’ and g3
15.3.1 j equivalent to 2d + 3 modulo 6

If j =3 2d 4+ 3 modulo 6, then we get:

HD(G™ (a(j);i4,d,1)) = HD(GH (al); 4,d, 1)) = g} =17 = p =027 =

_ (14 u?0)9(1 + uv?)9 — (uwv)9(1 +u)9(1 + v)y
(1 —uv)3(1 — u?v?)

(1 + u)QQ(l + 7})29 . |:(u7))2972+j _ (uv)4gf4+(2d74j)/3] .

(1 4+ ux)?(1 +vx)?
2 (1—2)(1—uvx)

1—z(w) 1 1 — z(uv)? (15.10)

(uv)U—1)/25,(1=3)/2 (w)g+(d—2j)/3x(1—j>/2]

15.3.2 j equivalent to 2d + 2 or to 2d + 4 modulo 6

Let us suppose that j =¢ 2d+2 or j =¢ 2d+4; then in both cases we have that d—j/2 #3 0.
Therefore we can use formula (8.12) in order to compute the Hodge-Deligne polynomial of
M*(3,d—j/2) = M(3,d—j/2). So we get:

HD(G™ (a(j);4,d, 1) = HD(G* (aj)s 4, d, 1)) = gf =242 — p{=214 =
(wv)31/2 — (wv)39-3+d=2j (1 4+ uz)9(1 + vx)Iz /2
1 —uw 0 (1 —2)(1 —uvz) -
3j/2 3g—3+d—2j
=1 +uw)(1+v)? 1 Euz:z)));/(l __ (:27;)2;2(;_ u;v?’) '
[+ @) (1 4+ o) (1 4+ uv?) (1 + u?o)d+
—u?97 0297 1 4 w)2 (1 + w)9(1 +0)9(1 4 uv?)9(1 + u?v)I+

3g—1 3g—1 2.2 2 297 (1+uz)9(1+vx)dz™/
+u? N1+ wo + wPo?) (14 u) (1 + )] c%%sz 1= 2)(1 =)

— HD(M(3.d - j/2))

(15.11)
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15.4 The “last” moduli space for d non-equivalent to 0 modulo
3

The moduli spaces G(a;4,d, 1) are non-empty only if o < d/3. Therefore the last moduli
space G1(4,d,1) is the one for a =d/3 —e = a(0)7, so

HD(GL(4,d,1)) = HD(G™ («(0);4,d,1)) =
=HD(G (a(0);4,d,1)) — HD(GT (a(0); 4,d, 1)). (15.12)

The value j = 0 can never be obtained in case (1); it can be obtained in case (2) if d =3 1
or d =3 2 and it can be obtained in case (3) if d =3 0. As we said before, we are not able to

compute (15.12) in case (3). In case (2), if we use ({15.11]) we get:

Corollary 15.4.1. Let us suppose that d #s 0. Then the Hodge-Deligne polynomial of
G(a(0)7;4,d,1) = G(d/3 —e,4,d,1) = Gr(4,d,1) is given by

— (uv 39—3+d
HD(G(a(0)754,d,1)) = (1 +u)?(1 +v)? = uv)é(l (_ ugv2)2(1 PRGN

(14 w?0?) (1 + uPo?)(1 + w?)I (1 + uPv)9+
27129711 uw)2(1 4 w)?(1 + )9 (1 + w?)9 (1 + uv)I+
+u? I 4w + wPo?) (14 w)* (1 +v)] . (15.13)

If we denote by p(u,v) that polynomial, a direct check proves that

plu=t v7h) = (u0) 2 p(u, v).

We know that the dimension of the moduli spaces G(«;4,d,1) is given by 5(4,d,1) =
12g — 12 + d; therefore the previous polynomial satisfies Poincaré duality.

15.5 Crossing the critical value a(1) for every d

As we said before, the non-zero critical values a(j) are all such that [j]¢ € {0,2,4,2d +
3}mod 6- Therefore, if a(1) is an actual critical value then necessarily 1 = j =g 2d + 3, so we
are in case (1). Actually, this is equivalent to imposing that d =3 2. If this happens, then by

using formula (15.10)) we get that

HD(G™ (a(1);4,d,1)) = HD(GT (a(1);:4,d,1)) =
(1 +u?0)I(1 + ww?)d — (w)I(1+u)9(1 4 v)d
N (1 —uv)3(1 — u?v?) .

(1 + )9 (1 +v)% [(uv)2g—1 — (uv)4g—5+(2d—1)/3] .

(1 4+ uz)?(1 +vx)9 1 (uw)9tH(d=2)/3
. coeff .
W -z

(1—2)(1 — uvz) (w)~1 1 —a(uww)?

So we have the following lemma.
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Lemma 15.5.1. If d #3 2, then a(1) is not an actual critical value. If d =3 2, then (1) is
an actual critical value and
HD(G(a(1);4,d,1)) — HD(G (a(1); 4,d,1)) =

(T4 w0)9(1 + wv?)? — (wo)? (1 + u)(1 + v)9
B (1 —uv)3(1 — u?v?) '

(1 + u)2g(1 + v)2g . |:(UU)2g71 N (uv)4gf5+(2dfl)/3} . |:1 _ (U’U)g+(d72)/3 )
By combining corollary [15.4.1] and lemma [15.5.1] if d =3 2 we have

1— (uv)3g—3+d

HD(G(o(1)754,4,1) = (L4 0 (L+ 0 oo ey

.[(1+u2v3)g(1+u3v2)g(1+uv2)g(1+u2?})g+
_u29—1U2g—1(1+uv)2(1+u)g(1+v)9(1+u02)9(1+u2v)9+
FuP9 10397 (1 4w + w0?) (14 w) 29 (1 + 0) %] +

(14 u?0)9(1 + uv?)9 — (uv)9(1 + u)I(1 + v)9
(1 —uv)3(1 — u?v?)

. [(uv)%*l — (uv)4g*5+(2d*1)/3] . [1 — (uv)g+(df2)/3} )

(1 +u)?(1 4 0)%.

By rearranging, we get:

Corollary 15.5.2. If d =3 1, then (1) is not an actual critical value, so G(a(1)7;4,d,1) =
G(a(0)7;4,d,1); therefore gives also the Hodge-Deligne polynomial of G(a(1)™;4,d,1).
If d =3 2, then (1) is an actual critical value and

HD(G((1)734,d,1)) =

(14 u)?(1 +v)? 1 — (uv)39-3+d
(1 —uv)3(1 — w?v?) { (1 + uv) (1 — udv?)

3
a0 (1 + wP?)I (1 + wo?)9 (1 + uPo)I+
—u? 2 (1 4 ww)2 (1 4+ w)? (1 +0)9(1 + wv?)9 (1 + u?v)I+
+uP TN (1 4w + wP0?) (1 + w) (1 +0)%] +
+ (14 u®0)? (1 +uw®)? — (wv)? (L +u)?(1+0)7] - (1+u)? (1 + )

. [(uv)ngl _ (uv)4g75+(2d71)/3} . [1 - (uv)g+(d72)/3} } _

Remark 15.5.1. If d =3 0, then «(0) is not an actual critical value, so also in this case
G(a(1)7;4,d,1) = G(a(0)7;4,d, 1), but since corollary |15.4.1{ holds only for d #3 0, then we
cannot have an explicit formula for the Hodge-Deligne polynomial of such a space.
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15.6 Crossing the critical value a(2) for d non-equivalent to 1
modulo 3

The case j = 2 corresponds always to an actual critical value. To be more precise, if
d #3 1, we are in case (2); if d =3 1, this corresponds to case (3) (in this case, as before we
cannot say anything explicitly). By using (15.11)), if d #Z3 1 then:

HD(G (a(2);4,d,1)) — HD(GT (a(2);4,d,1)) =

(UU)B _ (uv)39_7+d
(1 — u)2(1 — u202)2(1 — udod)

1+ w0 (1 + o) (1 + w?) (1 + uPv)I+

—U29—1U29_1(1—}—U’U)2(1+U)g(1+v)g(1+U'U2)g(1+u2v)g+

— L+ (1 +v)’

-1
39—1, 3g—1 2,2 29 297 (1 +uz)9(1 +vx)z
+u N1+ wo + wPo?) (14 u) (1 + v)?] c%%ff =)0~ o)

By expanding in power series around z = 0, we have

1 9(1 9z~ 1 9(1 g
coe (1+ux)?(1 +vz)z :coeff( + ux)9(1 4 vx)

0 (1 —-2z)(1 —uvx) 2 (1—2)(1 — uvx)

=14 g(u+v)+ uv.

So we get:

Lemma 15.6.1. Ifd #3 1, then

HD(G (a(2);4,d,1)) — HD(GT (a(2);4,d,1)) =

(uv):} _ (uv>3g77+d
(1 —ww)2(1 — u202)2(1 — udv3)

1+ wP0?) (14 o) (1 + uv?) (1 + u?o)d+
—u29 297 (1 4 ww)? (1 + w)9 (1 + 0)2(1 + w?)9(1 4 u?v)9+
2397139711 4w + w0?) (1 + w) (1 + v)QQ] (14 g(u+v) + uv).

— L+ )91 +v)f

We can combine corollary [15.5.2) and lemma [15.6.1 only if d =3 2. In this case we get:

14+ u)9(1+v)d 1 — (uw)39—3+d
HD(G™ (a(2);4,d,1)) = (1(_20))3((1 —+u2>v2) { (1+ u(v)(i —udvd)

(14 w01+ uo?) (1 + w?)d (1 + uPv)I+

—u?9 727 (1 4 w)2 (1 + w)9(1 +0)?(1 4 wv®)9(1 + u?v)I+
FuPI I (1 4w + w?0?) (1 + w)9 (1 + 0) %] +
+ [(1+ w®0)(1 + uv?)? — (wv)?(1 +w)? (1 +v)9] - (1 +w)(1 + v)9-
[yt — oyt @EDB) T (D) ]y



15.7 Crossing the critical value «(3) for every d 379

(uv)3 _ (uv)3g—7+d
+(1+u)?(1 +v)? (1 — uv)2(1 — u2v2)2(1 — wdv3)

@+ wP0?) (1 + o) (1 4+ uv?)(1 4 u?o)9+

—u?9 7297 1 4 w)2(1 + w)9(1 +0)9(1 4+ uv?)9(1 + u?v)I+
+u9 (1 + w4+ u?0?) (14 u)® (14 v)%] - (1 + g(u +v) + uv).
So we have:

Corollary 15.6.2. [fd =3 2, then a(2) is an actual critical value and

HD(G™ (a(2);4,d,1)) =

M Hw)1+0)? 1= (w)373 4 [(u)® — (w)39 7T 1+ g(u+ v) + o)
(1 —ww)3(1 — u20?) { (14 uv)(1 — udv3) ‘

(@) (1 + uPo?) (1 + w?) (1 + wo)i+
—u?97 02971 4 u)2(1 + w)9(1 +0)9(1 4+ uv?)9(1 + u?v)I+
+u 131+ w4+ uPo?) (14 u) (1 +v)%] +
+ (1 + w®0)? (1 4+ uv?)? — (wo)?(1 + uw)?(1+v)9] - (1 +w)9(1 + v)9-

) [(uv)ngl _ (uv)4975+(2d71)/3} . [1 _ (uv)g+(d72)/3} } (15.14)

15.7 Crossing the critical value «a(3) for every d

As we said before, the non-zero critical values «(j) are all such that [j]¢ € {0,2,4,2d +
3}mod 6. Therefore, if «(3) is an actual critical value then necessarily 3 = j =g 2d + 3, so we
are in case (1). Actually, this is equivalent to imposing that d =3 0. If this happens, then by

using formula (|15.10) we get that

HD(G (a(1);4,d,1)) — HD(GT (a(1);4,d,1)) =

UZU ’U/U2 — (uv u (%
AL PO

-1 g—2+d/3,,—1
‘ 2941 19-8+24/3] | ooff (14 uz)9(1 +vx)? uvx ~ (w) x
(uv) (uv) ] %0 (1 —2)(1 —uvx) 1—z(uv)~! 1 — z(uv)?
Now
i (1 + ux)9(1 + vz)d uvz ! B (uv)9—2+d/35~1 B
% (1—2)(1 —uvx) 1 —z(uv)~t 1 — z(uv)? N

- C?ﬁﬁ (1—2)(1 —uvx)

(1 + ux)9(1 + vz)d uv (uv)9—2+d/3 B
1 —z(w) T 1—z(w)? |
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= C(;el)ff(l + guz)(1+ gvz)(1+ z)(1 + vox) - [(uv)(l + z(uww) 7Y = ()97 FB(1 + x(uv)z)} =
= coeff[1 + #(1+ gu-+v) + )] - [(w)(1 ) ) — ()21 4 a(ue)?)] =
= (uv)[(u0) "+ 1+ g(u + v) + wv] — (u0)I 23 [(ww)? + 1+ glu+ v) + w] =
=14+ (uv)+g(uwv)(u+v)+ (uv)2 — (uv)g+d/3 - (uv)g_2+d/3 —g(uv)g_2+d/3(u+v) - (uv)g_Hd/?’.
So we have the following lemma.

Lemma 15.7.1. If d #3 0, then «(3) is not an actual critical value. If d =3 0, then «(3) is
an actual critical value and

HD(G (a(3);4,d,1)) — HD(GT (a(3);4,d,1)) =

uv)9 w?)? — (uv)9 u)d v)9
_a+ ><1(+1_u3})3(1<_l2<012)+ ) e

. [(uv)29+1 - (uv)49*8+2d/3] 1+ (wv) + g(uv)(u+v) + (uv)*+

_(uv)g+d/3 o (uv)g72+d/3 . g(uv)g72+d/3(u + U) - (uv)gfl+d/3 )

We recall that we don’t know any of the polynomials for G(a(j) ;4,d,1) for d =3 0
and j = 0,1,2. Therefore the formula of the previous lemma is not useful in order to get
information for the moduli space G(«(3)7;4,d,1) when d =3 0. We can get a polynomial for
such a space only if d =3 2.

Corollary 15.7.2. Ifd #3 1,2, then a(3) is not an actual critical value, so G(a(3)™;4,d,1) =
G(a(2)7;4,d,1); therefore (15.14) gives also the Hodge-Deligne polynomial of G(a(1)™;4,d, 1)
whenever d =3 2.

Remark 15.7.1. In principle, one can go further and try to compute what happens when we
cross «(4). In this case, we are always in cases (2) or (3); more precisely, we have a complete
formula only in case (2), that corresponds to d #3 0. So we are able to get formulae for
crossing a(4) only when d =3 0 or d =3 1. But in these 2 cases we have no information
about G(«(2)7;4,d,1). So with the present technique we cannot go any further, until all the
polynomials involved in case (3) are known completely.



Chapter 16

Case n—=2, k=2 on a Petri curve

In this chapter we want to study the moduli spaces G(«;2,d,2). In order to be able to do
some computations, we will restrict to any Petri curve of genus g > 2 with d large (see below
for the details). We recall the definition:

Definition 16.0.1. ([BGMN| definition 2.9]) A curve C is called a Petri curve if the Petri
map
HY(L)® H(LV ® K) — H°(K)
is injective for every line bundle L over C.
By [BGMN] theorem 8.1], the moduli spaces G(«;2,d,2) for a non-critical are non-empty

if and only if d > 2. In this case they are irreducible and of the expected dimension 2d — 3.

Let us consider the critical values for the triple (n,d, k) = (2,d,2). By [BGMN| §2] the

non-zero virtual critical values are all in the set

n'k — nk

In our case, this gives

d —n'd
{n n/s.t.nglgk’,0<n’<n7n’k;«énk’,d’EZ}ﬂ]O,oo[.

2d' —d
{2_2k/ S.t. k/:0,27 dIGZ}ﬂ]O,OO[,

that is

2 2 2

where the first set corresponds to destabilizing subsystems of the form (1,d’,0) and the second
one corresponds to destabilizing subsystems of the form (1,d’,2). Actually, the 2 sets coincide
both with the set

2d' — d d d—2d d
{ 5 s.t.d’>}u{ s.t.d’<},
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By [BGMN], proposition 4.6], actually the non-zero effective critical values are only a finite
subset of such a set. We will describe such a subset below.

16.1 The moduli spaces G*(a(y);2,d,2)

Let a(j) be any virtual critical value for j < d/2 and let us suppose that (E, V') belongs
to GT(a(4);2,d,2). Then by lemma [1.0.6] we get that (F,V) appears in a non-split exact
sequence:

0— (Q, W) = (E,V) = (Qa, W) = 0 (16.1)

where:

(a) (Q1,W1) and (Q2, W3) are both a(j)T-stable with 7% < % =1< In%;

(b) (Q1,W7) and (Q2, Wa) are both «a(j)-semistable with the same «(j)-slope as (E, V).
Conversely, it is easy to see that every such (E,V) is actually a point of Gt («a(5);2,d,2).

Moreover, every such (E, V) is completely determined by the class of the non-split extension

(16.1)), up to multiplication by invertible scalars. Condition (a) implies that nqy = ng = 1 and
that k1 = 0, so ky = 2; condition (b) implies that dy = d — j, so dy = j. Now

(Q17W1) = (leo € G(l’d 7]'7 O) = Jd_jC = le (Q?aWQ) € G(lv.]v 2) = GQ- (162)

We must impose that j > 0 in order to have that G is non-empty. Therefore, the only in-
teresting (i.e. a priori non-empty) schemes of the form G*(a(5); 2, d, 2) are those for 0 < j < 4.
So from now on we will work with this setting.

Now let us fix any pair of objects (Q1,0) € G, (Q2,W3) € G5. By lemma we have
that Hom((Q2, W2), (Q1,0)) = 0. Moreover, by [BGMN], proposition 3.2] we have that

H3; = Ext*((Q2, Wa), (Q1,0)) = H(QY ® Na ® K)Y,

where Ny is the kernel of the evaluation morphism ¢9 : Wo ® Oc — Q2. Since (Q2, Wa) is a
coherent system, then H°(¢9) is injective, so in particular we must have that ¢o is non-zero.
If Ny = 0, then we conclude directly that H2, = 0. If Ny # 0, then we get that Ny is a line
bundle because dim W5 = 2 and rank ()3 = 1. So we have an exact sequence

0> Ny > We®0Oc — L —0,

where L is a line bundle with at least 2 sections. Therefore, deg No < —2. So

deg(QY ® No®@ K) = —dj +deg Ny +29g —2< —d+j+29—4 < 29— 2.

Then by Clifford theorem we have that if H3, is not zero, then
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—d+j+29g—4 —d+j+29g—2
+i+2-4 _ —d+j+29-2

dim H3, = h®(QY ® Na ® K) < 5 5

Since we want to compute the Hodge polynomials of some of the moduli spaces G(«(j)™; 2,
d, 1), then we need to restrict to the case when H3, is zero. The previous computation shows
that H3, is zero if we assume that

Jj<d—2g+2.

This is only a sufficient condition, we don’t know if it is also necessary. By combining this
with the previous conditions on j, we are therefore restricting from now on to the case when

d
O§j<min{2,d—2g—|—2}. (16.3)

Remark 16.1.1. Such a set is non-empty whenever d > 2g — 1. Moreover, such a set coincides
with the whole range of the values of j under consideration (i.e. 0 < j < d/2) if d > 4g — 4.
So if d > 49 — 4 we are able to describe the geometry of all the finitely many flips from the
last moduli space to the first one.

So from now on let us assume that d > 4g — 4 and let us fix any 0 < j < d/2. Then by
proposition we have that

dim Ext'((Q2, W2), (Q1,0)) = Cay + dim HY, + dim H3, = Co; =
:nlng(g—1)—d1n2+d2n1+k2d1—anl(g—l) =
=g—-1—-d+j+j+2d—2j—-2(9g—1)=d—g+1.

Now the moduli space G; is smooth and irreducible for every 0 < j < d/2. Since we
assumed that C is a Petri curve, then by [BGMN| §2.3], we have that G(1, j,2) is non-empty
if and only if §:=2j —g—2 >0, i.e. if and only if 7 > ¢g/2+ 1. So we get that the only
non-zero (virtual) critical values a(j) for which Gt (a(5),2,d,2) is non-empty are those such
that

9 1<l
g =Sy

On both the G;’s there are families of coherent systems (Q;, W;) (because of [BGMMNJ
proposition A.8]), so we can apply proposition for r = 2 and we get that there is a
projective bundle

ng:Rj—>G1XG2

with fibers isomorphic to P?~9; there is an injective morphism from R; to G(a(j)™;2,d,2),
such that the image coincides with G (a(j);2,d,2). Therefore, we get:
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Lemma 16.1.1. Let us suppose that d > 4g — 4. Then G*(a(5);2,d,2) is non-empty only if
g9/2+4+1<j<d/2. In this case, its Hodge-Deligne polynomial is given by

P = HD(GT (a()); (d - 25)/2:2,d.2) ) =

= HD(JICYHD(G(1, 5,2))HD(P9) =

d—g+1
g1 — (uv)®9

= (L (1 4+ 07—

HD(G(1,],2)). (16.4)

16.2 The moduli spaces G~ (a(j);2,d,2)

Let us consider now G~ («(j);2,d,2). By applying again lemma we get that every
(E,V) e G~ (a(j);2,d,2) sits in a non-split exact sequence ((16.1]) where:

(@) (Q1,W1) and (Q2, W2) are both a(j)~ -stable with 7% > % =1> %;

(b") (@1, W1) and (Q2, Wa) are both «(j)-semistable with the same «(j)-slope as (E, V).

Conversely, as before it is easy to show that every such (E,V) is actually a point of
G~ (a(j);2,d,2); moreover any such (F,V) is uniquely associated to a non-split exact se-
quence (|16.1)) with conditions (a’) and (b’), up to multiplication by invertible scalars.

Condition (a’) implies that n; = ny = 1 and that k; = 2, so ko = 0. Moreover, condition
(b’) implies that do = d — j, so di = j. Now

(Q1,W1) € G(1,5,2) =: G1,  (Q2,Wa) = (@2,0) € G(1,d — j,0) = J/C = Ga. (16.5)

Therefore, also in this case the (virtual) critical values a(j) such that G~ («(j);2,d,1) is
non empty are those such that g/2 +1 < j < d/2.

For every pair of objects (Q1, W1), (Q2,0) in those 2 spaces, we have that ;- (Q2,0) >
Ha()- (@1, W1) as a consequence of properties (a’) and (b’). Therefore, by lemma m there
are no morphisms from (Qs,0) to (Q1, W1), so HY; = 0. Moreover, by [BGMN, equation (11)],
we have that also H3; = 0. Therefore

dim Eth((QQ,O), (Ql,Wl)) =(C91 = nan(g — 1) —ding + dony =
=g—1—j4+d—j=g+d—1—-2j.

Therefore as in the previous section we get that the space G~ («(j);2,d,2) is given by a
projective bundle over Gy x G with fibers isomorphic to P974=2-21 50 we have:
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Lemma 16.2.1. Let us suppose that d > 4g — 4; then G~ («(j); 2,d,2) is non-empty only if
g/2+4+1<j<d/2. In this case, its Hodge-Deligne polynomial is given by

¢ = HD(G_(a(j); (d—25)/2;2,d, 2)) -
— ’HD(Jd—jC)’HD(G (]-7ja 2))HD(Pg+d—2—2j) _

1— (up)9td—1-2i

= (L u)?(1+ vy =

HD(G(1,7,2)). (16.6)

16.3 The polynomials for G(a(k)™;2,d,2)
By combining the previous 2 lemmas we get the following result.

Theorem 16.3.1. Let us suppose that C' is a smooth projective irreducible Petri curve of
genus g > 2 and let d > 4g — 4. Then the actual critical values for (2,d,2) are all of the form
d—2k g d
k) = SH1<k< =
a(k) 5 +1<k< 5
For each value of k in that range the following formula holds:

HD(G(a(k)™;2,d,2)) =

k
= UEPOEOR 5™ (o1 — () DG 5,2))) =

1—wv )
j=lg/2]+1

K
_« +7f)j(iv+ v)9 (k B g) (wo)™o* N HD(G(1,4,2)+

Jj=[g/2]+1
k .
- Y () TEHD(G(L,5,2) | - (16.7)
Jj=[g/2]+1

Since we assumed that C' is a Petri curve, then by [BGMN, §2.3|, we have the following
properties for G(1, j,2):

e if 5=2j—¢g—22>0, then G(1,7,2) is smooth of dimension ;
e if 5> 0, then G(1,7,2) is irreducible;

e if 3> 0, there is a morphism to the Brill-Noether locus:

the fiber of v over any line bundle L is isomorphic to the Grassmannian Grass(2, h°(L)).

Then we have the following lemma
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Lemma 16.3.2. Let us fix any smooth projective irreducible Petri curve of genus g > 2. Then
for every 7 > 2g — 1 we have

HD(G(1, j,2)) = (1(1_2113)(91(1_?;3;72) [1— (o)™ — (P9 4 ()P +129] . (16.9)

Moreover,

1 .

(1 —wv)(1 — (uv)?)
(U w2(1+0)7 = D1 — (@)% — () 4+ (@) + 1 — (o)t — ()9 + (ue)9 1}
(16.10)

HD(G(1,29 — 2,2)) =

Proof. First of all, let us prove (|16.9)), so let us assume that j > 2¢g — 1. Since we are working
over a curve of genus g > 2, then we get that j > g+ 1. Let us fix any line bundle L on C
with degree j. Then by Riemann-Roch we have
(L) >h(C L) —h (C, L) =j+1—g>g+14+1—g=2.

Therefore whenever j > g + 1 we have that B(1,,2) coincides with the Jacobian J/C.

Since j > 2g—1, then by Riemann-Roch and [Hal, IV, example 1.3.4], we get that for every
line bundle L on C":

h(C, L) =h°(C,L) =AY (C, L) =7 +1—g.

So if j > 2g — 1, then the fiber of (16.8) over any point L € B(1,5,2) = J/C is the

grassmannian Grass(2,j + 1 — g). Then we get that for each j > 2g — 1 we have:

(1= (uw)=9)(1 = (uww)’*'79)
(1 —uv)(1 — (uwv)?)

So we get the first formula. Now let us prove also the second formula. If g > 3, then by

= (1+u)(1+v)

Riemann-Roch we get that for every line bundle L of degree 2g — 2 we get

h(C,L) > h’(C,L) = h'(C,L) =29 —2+1—-g=g—1>2.

Therefore for every g > 3 we have G(1,2g — 2,2) = J?72C. In this case h°(C, L) = g if
L is the canonical bundle, otherwise we have h’(C,L) = g — 1. So in this case the fiber of
(116.8]) is equal to the Grassmannian Grass(2, g) if L is the canonical bundle and it is equal to
Grass(2,g — 1) in the opposite case. Then for all g > 3 we have:

1

HD(G(1,29 — 2,2)) = el
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A +u)?(1+0)7 = D[L — (w)?? = (w)? ' + (w)? 73] + 1 — (w0)? ! — (uw)? + (uwv)? 1},
(16.11)
When the genus of C' is g = 2 the Brill-Noether locus B(1,2g — 2,2) = B(1,2,2) consists
of a single point, namely the canonical bundle K on C. Moreover, the fiber of G(1,2g9—2,2) =
G(1,2,2) over K consists of the Grassmannian Grass(2,g) = Grass(2,2) = Spec(C). There-
fore for g = 2 the moduli space G(1,2g — 2, 2) consists of a single point. So its Hodge-Deligne
polynomial is equal to 1.

Now if we substitute g = 2 in ({16.11)) we get the polynomial 1. Therefore (16.11)) is still
valid for g = 2, so we conclude. O

This result is immediately applicable in order to compute

HD(G((k); 2,d,2)) — HD(G(a(l); 2, d, 2))
for any pair of integers k, [ such that

d
In particular, we can apply this result starting from the last moduli space and crossing
every critical value from right to left (or starting from the first moduli space and crossing from
left to right) whenever

%+1229—2 o g<4

So one would be able to get complete results for every G(a(k);2,d,2) for g = 2,3,4,
provided that the polynomials of the first moduli space or of the last one are known. We
remark that differently from the cases when k = 1, in the case under consideration the moduli
space G(a;2,d,2) is always non-empty also when « is very large. Therefore it is not possible
to compute the Hodge-Deligne polynomial of the last moduli space as we did in the previous
chapters.
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